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Abstract. When assessing causal effects, determining the target pop-
ulation to which the results are intended to generalize is a critical
decision. Randomized and observational studies each have strengths
and limitations for estimating causal effects in a target population.
Estimates from randomized data may have internal validity but are
often not representative of the target population. Observational data
may better reflect the target population, and hence be more likely to
have external validity, but are subject to potential bias due to unmea-
sured confounding. While much of the causal inference literature has
focused on addressing internal validity bias, both internal and exter-
nal validity are necessary for unbiased estimates in a target popu-
lation. This paper presents a framework for addressing external va-
lidity bias, including a synthesis of approaches for generalizability
and transportability, the assumptions they require, as well as tests
for the heterogeneity of treatment effects and differences between
study and target populations.
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1. BACKGROUND

The goal of causal inference is often to gain understanding of a particular
target population based on study findings. The true underlying causal effect
will typically vary with the definition of the chosen target population. However,
samples unrepresentative of the target population arise frequently in studies
ranging from randomized controlled trials (RCTs) in clinical medicine to policy
research (Bell et al., 2016; Kennedy-Martin et al., 2015; Allcott, 2015). In a clin-
ical trial setting, physicians may be left interpreting evidence from RCTs with
patients who have demographics and comorbidities that are quite different from
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Figure 1. Internal vs. external validity biases as they relate to target, study, and analysis populations.

those of their patients. As an example, within cancer RCTs, African Americans
are widely underrepresented despite being at an increased risk for many cancers
(Chen and Wong, 2018). Failing to address this lack of representation can lead
to inappropriate conclusions and harm (Chen et al., 2020). In a policy setting,
it is important to consider the effects that can be expected in the eventual tar-
get population in order to set expectations for anticipated results and determine
groups that should be targeted for an intervention.

The relationships between target, study, and analysis populations are visual-
ized in Figure 1. The target sample is a representative sample of the target popu-
lation, whereas the study population is defined by enrollment processes and in-
clusion or exclusion criteria. Due to these practical and scientific considerations,
the study population may differ from the target population. Correspondingly,
the enrolled participants who form the study sample may have different char-
acteristics from those of the target sample. In the cancer RCT example, while a
physician might care about the target population of patients that may come in
to be treated by their clinic (of which the clinic’s current patients are a target
sample), the study sample on which they’re basing their treatment recommen-
dations may not include any African Americans. The study population is the hy-
pothetical population that the study sample represents, which likewise includes
no African Americans. Post-enrollment, further dropout and missingness may
occur that create the observed analysis sample. In this case, dropout may have
occurred for patients who experienced severe adverse events such that the anal-
ysis sample consists of patients who did not experience severe side effects. There
then exists a hypothetical analysis population from which the analysis sample
data is a simple random sample. Hereafter, for simplicity and consistency with
the literature, we will use the terms study sample and study population to be
inclusive of the analysis sample and analysis populations, respectively.

Several key concepts are crucial to understand when considering extending
causal inferences beyond a study sample. Generalizability focuses on the set-
ting where the study population is a subset of the target population of inter-
est, while transportability addresses the setting where the study population is (at
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least partly) external to the target population. Internal validity is defined as an
effect estimate being unbiased for the causal treatment effect in the population
from which the sample is a simple random sample (i.e., moving vertically from
a sample to its corresponding population in Figure 1). External validity is con-
cerned with how well results generalize to other contexts. Specifically, that the
(internally valid) effect estimate is unbiased for the causal treatment effect in
a different setting, such as a target population of interest (moving laterally be-
tween populations in Figure 1). External validity bias has also been referred to
as sample selection bias (Heckman, 1979; Imai, King and Stuart, 2008; Moreno-
Torres et al., 2012; Bareinboim, Tian and Pearl, 2014; Haneuse, 2016).

External validity bias arises from differences between the study and target
populations in (1) subject characteristics; (2) setting, such as geography or type
of health center; (3) treatment, such as timing, dosage, or staff training; and (4)
outcomes, such as length of follow-up or timing of measurements (Cronbach
and Shapiro, 1982; Rothwell, 2005; Dekkers et al., 2010; Green and Glasgow,
2006; Burchett, Umoquit and Dobrow, 2011; Attanasio, Meghir and Szekely,
2003). The focus of most generalizability and transportability methods is on ad-
dressing differences in subject characteristics. Hence, these methods assume the
remaining threats to external validity are not present in the data sources they
are looking to generalize across. Namely, external validity bias then arises solely
from: (1) variation in the probability of enrollment in the study, (2) heterogene-
ity in treatment effects, and (3) the correlation between (1) and (2) (Olsen et al.,
2013). We therefore distinguish between factors differentiating the target pop-
ulation from the study population (external validity bias) and those that create
differences between treatment groups (internal validity bias), e.g., confound-
ing. RCTs are frequently performed in a nonrepresentative subset of the target
population and may have imperfect follow-up (challenging their external valid-
ity) and may have baseline imbalances (leading to internal validity bias). Obser-
vational studies may be susceptible to unmeasured confounding (threatening
their internal validity), but may be more representative of the target population
(hence having better external validity). Lack of representation in an RCT can
lead to external validity bias that is larger than the internal validity bias of an
observational study (Bell et al., 2016).

The optimal solution to external validity bias centers on study design, which
we review briefly here, but do not cover extensively. One type of ideal study
would randomly sample subjects from the target population and then randomly
assign treatment to the selected individuals. However, this is usually infeasible.
Alternative study designs for improving study generalizability and transporta-
bility include purposive sampling, where investigators deliberately select indi-
viduals such as for representation or heterogeneity (Shadish, Cook and Camp-
bell, 2001; Allcott and Mullainathan, 2012); pragmatic or practical clinical tri-
als, which aim to be representative of clinical practice (Schwartz and Lellouch,
1967; Ford and Norrie, 2016); stratified selection based on effect modifiers or
propensity scores for selection (Tipton et al., 2014; Tipton, 2013a; Allcott and
Mullainathan, 2012); and balanced sampling designs for site selection that se-
lect representative sites through stratified ranked sampling (Tipton and Peck,
2017). In lieu or in addition to study designs that address external validity bias,
generalizability and transportability methods can improve the external validity
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Figure 2. Overview framework for assessing and addressing external validity bias after data collection.

Estimand: consider study and target popula-
tions, and with them, the estimand of interest

Assumptions: assess validity of assumptions neces-
sary for generalizability or transportability approaches

Evaluating Generalizability: examine whether treatment ef-
fect modification exists and whether effect modifiers dif-
fer in distribution between study and target populations

Generalizability and Transportability Methods:
apply methods for addressing external validity bias

of effect estimates after data collection.
This manuscript provides a review of generalizability and transportability re-

search, synthesizing across the statistics, epidemiology, computer science, and
economics literature in a more complete manner than has been done to date. Ex-
isting review literature has examined narrower subsets of the topic: generaliz-
ing or transporting to a target population from only RCT data (Stuart, Bradshaw
and Leaf, 2015; Stuart, Ackerman and Westreich, 2018; Kern et al., 2016; Tip-
ton and Olsen, 2018; Ackerman et al., 2019), identifiability rather than estima-
tion (Bareinboim and Pearl, 2016), or meta-analysis approaches for combining
summary-level information (Verde and Ohmann, 2015; Kaizar, 2015). A recent
related review on combining randomized and observational data featured a sim-
ulation, real data analysis, and software guide (Colnet et al., 2020). However,
these previous reviews have not summarized the full range of generalizabil-
ity and transportability methods that incorporate data from randomized, obser-
vational, or a combination of randomized and observational studies, nor tech-
niques for evaluating generalizability, as we do here. Additionally, although the
importance of describing generalizability and transportability is recognized by
different trial reporting guidelines (e.g., CONSORT, RECORD, STROBE), they
provide no clear guidance on tests or estimation procedures (Schulz, Altman
and Moher, 2010; Benchimol et al., 2015; von Elm et al., 2008). We also con-
tribute recommendations for methodologists and applied researchers.

The remainder of the article synthesizes considerations for assessing and ad-
dressing external validity bias after data collection (presented as a framework
in Figure 2) and is organized as follows. Section 2 defines the estimand of inter-
est, the average treatment effect in a target population, as well as alternatives.
Section 3 presents key assumptions underlying many of the methods. Section 4
reviews methods for assessing treatment effect heterogeneity, thus further mo-
tivating the need for methods that enable generalizing or transporting study
results to a target population. Section 5 then summarizes the analytic methods
available for external validity bias correction that generate treatment effect es-
timates for a target population of interest. These techniques include weighting
and matching, outcome regressions, and doubly robust approaches. Section 6
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then concludes with guidance for both applied and methods researchers.

2. ESTIMAND

Assume, for one or more studies, the existence of outcome Y , treatment A ∈
{0,1}, and baseline covariates X ∈ R

d . For simplicity of notation, we define X
to represent all treatment effect confounders and effect modifiers (subgroups
whose effects are expected to differ) that differ between study and target pop-
ulations; each variable in X is both a confounder and an effect modifier. With-
out loss of generality, we focus on the single study setting, with S = 1 indicat-
ing selection into it. The observational unit for the study sample is Ostudy =
{X,A,Y ,S = 1}. Ostudy has probability distribution Pstudy ∈Mstudy, whereMstudy
is our collection of possible probability distributions (i.e., statistical model). We
observe ns realizations of Ostudy, indexed by j. The observational unit for a rep-
resentative sample from the target population is given by O = {X,A,Y ,S} ∼ P ∈
M. We observe n realizations of O, indexed by i. Target sample subjects who
do not appear in the study sample will have S = 0. We use the terminology
“selected” or “sampled” throughout the paper for simplicity although for trans-
portability, subjects are not directly sampled into the study from the target pop-
ulation. For generalizability, Ostudy ∈ O, while for transportability, the two are
disjoint sets, Ostudy <O.

Biases are defined with respect to an estimand. We will focus on the average
treatment effect in a well-defined target population of interest: the population
average treatment effect (PATE). Namely, we are interested in the average out-
come had everyone in the target population been assigned to treatment A=1
compared to the outcome had everyone been assigned to treatment A=0. We
write this as τ = EX(E(Y |S = 1,A = 1,X) − E(Y |S = 1,A = 0,X)) = E(Y 1 − Y 0),
where Y 1 and Y 0 are the potential outcomes under treatment and no treat-
ment, respectively, and required identifiability assumptions are delineated in
the next section. The corresponding estimator is given by τ̂ = 1/n

∑n
i=1 (Ŷ 1

i − Ŷ
0
i ).

We also write Y a to represent the potential outcome under a with lowercase a
a specific value for random variable A. Potential outcomes are either explicitly
assumed in the potential outcomes framework or a consequence of the struc-
tural causal model (Rubin, 1974; Pearl, 2000). Different target populations cor-
respond to alternative PATEs because the expectation is taken with respect to
alternative distributions of covariates X. However, necessarily, we only observe
outcomes in the study sample. A study therefore directly estimates the sam-
ple average treatment effect (SATE): τs = E(Y 1 − Y 0|S = 1) with estimator τ̂s =
1/ns

∑
j:Sj=1 (Ŷ 1

j − Ŷ
0
j ).

When the distributions of treatment effect modifiers differ between study and
target populations, the true study average effect will not equal the true target
population average effect (SATE , PATE) due to external validity bias. Sampling
variability as well as internal validity biases can also drive estimates of SATE
further from the truth (Figure 3). Biases may differ in magnitude and may make
the SATE either larger or smaller than the PATE.

We may also be interested in estimating other target parameters. For example,
the population conditional average treatment effects (PCATE): τx = E(Y 1−Y 0|X)
is examined in some of the estimation methods we explore later. Another param-
eter of interest is the population average treatment effects among the treated:
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Figure 3. Illustrative example of the difference between target population and sample average treatment
effects (PATE and SATE). Biases may differ in magnitude and may make the SATE either larger or
smaller than the PATE.

τ1 = E(Y 1 − Y 0|A = 1). Similar generalizability and transportability considera-
tions presented in the following sections will apply for these and other causal
estimands.

3. ASSUMPTIONS

Under the potential outcomes framework, the assumptions below are suffi-
cient to identify the PATE using the observed study data. A corresponding set
of assumptions under the structural equation model (SEM) framework has also
been derived (Pearl and Bareinboim, 2014; Pearl, 2015; Pearl and Bareinboim,
2011; Bareinboim and Pearl, 2014; Bareinboim and Tian, 2015; Bareinboim and
Pearl, 2016; Correa, Tian and Bareinboim, 2018). Additional assumptions in-
clude those of no missing data or measurement error in outcome, treatment, or
covariate measurements. Other target parameters of interest necessitate a simi-
lar set of assumptions.

3.1 Internal validity

Sufficient assumptions for identifying the PATE with respect to internal validity:
Conditional treatment exchangeability: Y a⊥A |X,S = 1 for all a ∈ A, the set

of all possible treatments. This condition requires no unmeasured confounding
of the treatment-outcome relationship in the study. It is satisfied by perfectly
randomized trials (e.g., no loss to follow-up, other informative missingness or
censoring, etc.) and by observational studies that have all confounders mea-
sured. While this condition is sufficient, it is not always necessary. When esti-
mating the PATE, it can be replaced by the weaker condition of mean conditional
exchangeability of the treatment effect, E(Y 1 −Y 0|X,A,S = 1) = E(Y 1 −Y 0|X,S =
1) (Kern et al., 2016; Dahabreh et al., 2019a).

Positivity of treatment assignment: P (X = x|S = 1) > 0 ⇒ P (A = a|X = x,
S = 1) > 0, with probability 1 for all a ∈ A. This condition entails that each
subject in the study has a positive probability of receiving each version of the
treatment. In combination with the conditional treatment exchangeability as-
sumption above, this assumption is also known as strongly ignorable treatment
assignment (Varadhan, Henderson and Weiss, 2016).

Stable unit treatment value assumption (SUTVA): if A = a then Y = Y a. This
assumption requires no interference between subjects and treatment version ir-
relevance (i.e., consistency/well-defined interventions) in the study and target
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populations (Dahabreh et al., 2017; Kallus, Puli and Shalit, 2018).

3.2 External validity

Following the assumptions above, identifying the PATE involves a parallel set
of assumptions for external validity:

Conditional exchangeability for study selection: Y a⊥S |X for all a ∈ A. This
assumption is also known as exchangeability over selection and the generaliz-
ability assumption. It requires that the outcomes among individuals with the
same treatment and covariate values in the study and target populations are the
same (Stuart et al., 2011). All effect modifiers that differ between study and tar-
get populations must therefore be measured. This assumption would be satisfied
by a study sample that is a random sample from the target population or a non-
probability study sample in which all effect modifiers are measured. A weaker
condition, mean conditional exchangeability of selection, E(Y 1 − Y 0|X,S = 1) =
E(Y 1 − Y 0|X) can replace conditional exchangeability for study selection when
focusing on the PATE (Kern et al., 2016; Dahabreh et al., 2019a).

Positivity of selection: P (X = x) > 0 ⇒ P (S = 1|X = x) > 0 with probabil-
ity 1 for all a ∈ A. This assumption requires common support with respect to
study selection; in every stratum of effect modifiers, there is a positive prob-
ability of being in the study sample (Dahabreh et al., 2017). This can be re-
placed by smoothing assumptions under a parametric model, for example, that
the propensity score distribution has sufficient overlap or common support be-
tween the study sample and target population (Westreich et al., 2017; Tipton
et al., 2017). Thus, with conditional positivity of selection we assume that all
members of the target population are represented by individuals in the study.
The positivity assumption in combination with the no unmeasured effect modi-
fication assumption above is also known as strongly ignorable sample selection
given the observed covariates (Chan, 2017).

SUTVA for study selection: if S = s (and A = a) then Y = Y a. This assumption
states that there is no interference between subjects selected into the study ver-
sus those not selected and that there is treatment version irrelevance between
study and target samples (the same treatment is given to both) (Tipton, 2013b;
Tipton et al., 2017). It necessitates no difference across study and target sam-
ples in how outcomes are measured or in how the intervention is applied, that
there is a common data-generating function for the outcome across individuals
in the study and target populations (i.e., that being in the study does not change
treatment effects), and that the potential outcomes are not a function of the
proportion of individuals selected for the study. Treatment version irrelevance
in SUTVA can be replaced by the condition of having the same distribution of
treatment versions between study and target populations when estimating the
PATE (Lesko et al., 2017).

3.3 Transportability

Similar internal and external validity assumptions are needed for transporta-
bility, with the following modifications. When the study sample is a subset of the
target population (generalizability), the positivity assumption for selection will
need the propensity for selection to be bounded away from 0, whereas when the
sample is not a subset of the target population (transportability), the propen-
sity to be in the target population will need to be bounded away from 0 and 1
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(Tipton, 2013b). Furthermore, for transportability, the set of covariates, X, re-
quired for conditional exchangeability for study selection cannot include those
that separate the study sample from the target population (e.g., hospital type
if transporting results from teaching hospitals to community clinics, or geo-
graphic location if transporting between states) (Tipton, 2013b). Further dis-
tinctions are discussed by Pearl (2015) using the SEM framework. Under this
framework, Pearl and Bareinboim formalize the assumptions necessary for us-
ing different transport formulas to reweight randomized data, providing graph-
ical conditions for identifiability as well as transport formulas for randomized
studies (Pearl and Bareinboim, 2014; Pearl, 2015), observational studies (Pearl
and Bareinboim, 2011; Pearl, 2015; Bareinboim and Tian, 2015; Bareinboim and
Pearl, 2016; Correa and Bareinboim, 2017; Correa, Tian and Bareinboim, 2018),
and a combination of heterogeneous studies (Bareinboim and Pearl, 2014, 2016).

4. ASSESSING DISSIMILARITY BETWEEN TARGET AND STUDY

POPULATIONS AND TESTING FOR TREATMENT EFFECT

HETEROGENEITY

Numerous quantitative approaches can help evaluate the extent to which
study results may be expected to generalize to the target population. These as-
sessments examine population differences and whether treatment effect hetero-
geneity exists. Methods for assessing the similarity of study and target popula-
tions can broadly be categorized into those that compare baseline patient char-
acteristics and those that compare outcomes for groups on the same treatment.
For the former, many make use of the propensity score for selection, which also
serves the purpose of assessing the extent to which propensity score adjustment
using measured covariates can sufficiently remove baseline differences between
study and target samples. However, most of these methods do not emphasize
effect modifiers, hence should be combined with an assessment of whether the
noted population differences correspond to heterogeneity of treatment effects.
To test for heterogeneity of effects, one must first identify effect modifiers. Ef-
fect modifiers are often pre-specified by the investigator, but data-driven ap-
proaches exist as well, and will be discussed in this section.

4.1 Assessing dissimilarity between populations using baseline

characteristics

When summary-level study data are available, assessments that examine dif-
ferences in univariate covariate metrics between study and target samples can
be deployed. Cahan, Cahan and Cimino (2017) propose a generalization score
for evaluating clinical trials that incorporates baseline patient characteristics,
the trial setting, protocol, and patient selection: it takes ratios of the mean or
median values of these characteristics in the study and target samples, then av-
erages across categories for an overall score. However, this approach does not
account for any measures of dispersion, which may reflect exclusion of more
heterogeneous individuals from the study. When only baseline patient charac-
teristics are responsible for relevant study vs. target population differences, one
can perform multiplicity-adjusted univariate tests for differences in effect mod-
ifiers between study and target samples (Greenhouse et al., 2008). Alternatively,
one could examine absolute standardized mean differences (SMD) for each co-
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variate, (X̄study− X̄)/σX̄ , where X̄study and X̄ are the means of baseline covariates
in the study and target samples, respectively, and σX̄ is the standard deviation
of X̄ (Tipton et al., 2017). High values indicate heavy extrapolation and reliance
on correct model specification; in smaller samples, imbalances will often occur
by chance (Tipton et al., 2017). With one or more RCTs, generalizability across
categorical eligibility criteria can be assessed by the percent of the target sample
that would have been eligible for the study or set of studies (Weng et al., 2014;
He et al., 2016; Sen et al., 2016).

Joint distributions of patient characteristics can likewise be compared, such
as by examining the SMD in propensity scores for selection (Stuart et al., 2011).
When the propensity score is not symmetrically distributed, summarizing mean
differences is insufficient. Tipton (2014) developed a generalizability index that
bins propensity scores and is bounded between 0 and 1:

∑k
j=1

√
wpjwsj with

j = 1, ..., k bins, each with target sample proportions wpj and study sample pro-
portions wsj . It is based on the distributions of propensity scores rather than
only the averages. However, this approach requires patient-level study and tar-
get sample data. A generalizability index score of <0.5 indicates a study being
very challenging to generalize from and a score of >0.9 indicates high general-
izability (Tipton, 2014). Other propensity score distance measures can be used,
such as Q-Q plots, Kolmogorov-Smirnov distance, Levy distance, the overlap-
ping coefficient, and C statistic; these largely focus on comparing cumulative
densities (Tipton, 2014; Ding, Feller and Miratrix, 2016). To assess the degree
of extrapolation with respect to effect modifiers, one can examine overlap in the
propensity of selection distributions, such as the proportion of target sample
individuals with propensity scores outside the 5th and 95th percentiles of the
sample propensity scores (Tipton et al., 2017).

One can also adopt a machine learning approach for detecting covariate shift–
a change in the distribution of covariates between training and test data (here,
the study and target data) (Glauner et al., 2017). After creating a joint dataset
with target and study sample data, a classification algorithm predicts whether
the data came from the study. A dissimilarity metric surpassing a threshold of
acceptability then indicates sizable dissimilarity between datasets. However, an
inability to accurately predict study vs. target data origin does not rule out dif-
ferences in effect modifiers. A low score might furthermore indicate an incorrect
model specification or insufficient model tuning.

The tests discussed in this subsection assess differences between populations;
however, they require investigator knowledge of which characteristics moderate
the treatment effect (or are correlated with unmeasured effect modifiers) and
what level of differences are clinically relevant. Many covariates are often tested
or included in a propensity score regression for study selection. This approach
prioritizes predictors that are strongly associated with study selection rather
than those that exhibit strong effect modification. Investigators should therefore
aim to identify relevant effect modifiers for testing or inclusion in the propensity
score regression and test this subset.

4.2 Assessing dissimilarity between populations using outcomes

When individual-level outcome data or joint distributions of group-level out-
come data are available in both the study and target samples for at least one
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of the treatment groups, the following methods can assess the extent to which
measured effect modifiers account for population differences. One can compare
the observed outcomes in the target sample to predicted outcomes using study
controls (Stuart et al., 2011), or more generally, study individuals who received
the same treatment (Hotz, Imbens and Mortimer, 2005): 1/na

∑N
i=1 1(Ai = a)Yi vs.

1/ns,a
∑
i:Si=1 1(Ai = a)wiYi with weights wi defined by weighting and matching

methods discussed in Section 5.1. Hartman et al. (2015) formalize this com-
parison with equivalence tests. Alternatively, conditional outcomes for study
and non-study target sample individuals receiving the same treatment, condi-
tioning on measured effect modifiers, can be compared to detect unmeasured
effect modification, although other identifiability assumption violations might
also be at fault: E(Y |X,A = a,S = 1) vs. E(Y |X,A = a,S = 0). Possible tests include
analysis of covariance, Mantel-Haenszel, U-statistic based tests, stratified log-
rank, or stratified rank sum, depending on the outcome (Marcus, 1997; Hotz,
Imbens and Mortimer, 2005; Luedtke, Carone and van der Laan, 2019). For ex-
ample, study controls could be compared to subgroups of the target population
that were known to be excluded from the study (e.g., patients who declined
participation in a RCT, as done by Davis (1988)). Relatedly, unmeasured ef-
fect modification can be imperfectly tested for by disaggregating a characteristic
that differentiates the study from the target sample (Allcott and Mullainathan,
2012). These outcome differences should not exceed those observed between
study treatment groups (Begg, 1992).

In addition to testing for outcome differences, one can test for differences be-
tween study and target regression coefficients or between baseline hazards in
a Cox regression (Pan and Schaubel, 2009). Any identified differences in out-
comes or effects will reflect sample differences unaccounted for by the outcome
or weighting method, indicating unmeasured effect modification or an ineffec-
tive modeling approach. To have this comparison reflect relevant differences,
study controls must be representative of the target population after weighting
or regression adjustment. Hartman et al. (2015) provides a more formal set of
identifiability assumptions that may be violated when each equivalence test is
rejected. If unmeasured effect modification is suspected, one can perform sensi-
tivity analysis to assess the extent to which it can impact results (Marcus, 1997;
Nguyen et al., 2017, 2018; Dahabreh et al., 2019b; Andrews and Oster, 2017)
or to generate bounds on the treatment effect when only partial identification is
possible (Chan, 2017).

4.3 Testing for treatment effect heterogeneity

Identified population differences are relevant insofar as they correspond to
differences in treatment effect modifiers. The following tests enable an inves-
tigator to assess whether treatment effects vary substantially across measured
covariates. Many are suitable for use in observational or RCT data, although
have largely been demonstrated in RCT data to date. While some tests require a
priori specification of subgroups, others can discover them in data-driven ways
and most require individual-level data. A straightforward, but often overlooked
issue is that studies with enrolled patients that are homogeneous with respect
to effect modifiers will have difficulty identifying heterogeneity of effects. These
approaches are therefore best applied to data representative of the target popu-
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lations (Gunter, Zhu and Murphy, 2011).
Tests of prespecified subgroups should focus on target population subgroups

under- or over-represented in the study, or any other clinically relevant sub-
group expected to exhibit effect heterogeneity. Largely, methods for testing treat-
ment effect heterogeneity of a priori specified subgroups exhibit limited power.
Those testing several effect modifiers individually are particularly underpow-
ered to detect significant effects once multiple testing adjustments are incorpo-
rated. One approach tests the interaction term of treatment assignment with
an effect modifier in a linear model, which also requires modeling assumptions
as to the linearity and additivity of effects (Fang, 2017; Gabler et al., 2009). To
address this lack of power, sequential tests for identifying treatment-covariate
interactions can be used with either randomized or observational data (Qian,
Chakraborty and Maiti, 2019). Alternative approaches, each addressing slightly
different goals, include testing whether the conditional average treatment effect
is identical across predefined subgroups (Crump et al., 2008; Green and Kern,
2012), comparing subgroup effects to average effects (Simon, 1982), and identi-
fying qualitative interactions or treatment differences exceeding a prespecified
clinically significant threshold (Gail and Simon, 1985).

When effect modifiers are not known a priori, a variety of techniques can
be applied for identifying subgroups with heterogeneous effects. These include
those that identify variables that qualitatively interact with treatment (i.e., for
which the optimal treatment differs by subgroup) (Gunter, Zhu and Murphy,
2011) as well as determine the magnitude of interaction (Chen et al., 2017; Tian
et al., 2014). Various machine learning approaches can also be used to identify
subgroups with heterogeneous treatment effects while minimizing modeling as-
sumptions. Approaches that also present tests for treatment effect differences
between subgroups include Bayesian additive regression trees (BART) and other
classification and regression tree (CART) variants (Su et al., 2008, 2009; Lip-
kovich et al., 2011; Green and Kern, 2012; Athey and Imbens, 2016). Tree-based
methods develop partitions in the covariate space recursively to grow toward
terminal nodes with homogeneity for the outcome. These approaches may be
particularly useful when heterogeneity may be a function of a more complex
combination of factors.

With many effect modifiers or when effect modifiers are unknown, global
tests for heterogeneity can also be used. Pearl (2015) provides conditions for
identifying treatment effect heterogeneity (including heterogeneity due to un-
measured effect modifiers) for randomized trials with binary treatments, situa-
tions with no unobserved confounders, and with mediating instruments. Effect
heterogeneity can be tested for using the baseline risk of the outcome as an
effect modifier; interaction-based tests assess for differences in baseline risk be-
tween study and target population control groups (Varadhan, Henderson and
Weiss, 2016; Weiss, Segal and Varadhan, 2012). These tests avoid the need for
multiple testing but require outcome data in the target sample and modeling as-
sumptions. A consistent nonparametric test also exists that assesses for constant
conditional average treatment effects, τx = τ ∀x ∈ X (Crump et al., 2008). Addi-
tional methods, which suffer from limited power and rely on estimates of SATE,
include testing whether potential outcomes across treatment groups have equal
variances and whether cumulative distribution functions of treatment and con-
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trol outcomes differ by a constant shift (Fang, 2017). Global tests do not identify
subgroups responsible for effect heterogeneity, although if a global test is re-
jected, one can then compare individual subgroups to determine which demon-
strate effect heterogeneity.

If these assessments of generalizability fail and the target population is not
well-represented by the study population (specifically, when strong ignorability
fails), Tipton (2013b) provides several recommended paths forward. Investiga-
tors can change the target population to one represented by the study. That is,
change the estimand of interest by aligning inclusion and exclusion criteria, out-
come timepoints, or treatment doses (Hernán et al., 2008; Weisberg, Hayden and
Pontes, 2009). A population coverage percentage can then summarize the per-
cent overlap between the new and original target sample propensity scores, and
describe relevant differences from the original target population. Investigators
can alternatively retain the original target population and note the limitations
of extrapolated results and likelihood of remnant bias. It is also important to
acknowledge that a different study may need to be conducted.

5. GENERALIZABILITY AND TRANSPORTABILITY METHODS FOR

ESTIMATING POPULATION AVERAGE TREATMENT EFFECTS

Following the application of the methods in the previous sections, includ-
ing assessing the plausibility of relevant assumptions, an analytic method is
typically needed to generalize or transport results from randomized or obser-
vational data to a target population. These approaches have many parallels to
those used to address internal validity bias. We revisit weighting and matching-
based methods and outcome regressions in depth while additionally examining
techniques that use both propensity and outcome regressions (these are often
doubly robust). To mitigate external validity bias, generalizability and trans-
portability methods address differences in the distribution of effect modifiers
between study and target populations. To do so, for weighting and matching-
based approaches, these methods account for the probability of selection into
the study, rather than the probability of treatment assignment. Outcome regres-
sions require that treatment effect is allowed to vary across all effect modifiers
in addition to all confounders being correctly included in the regression.

Most generalizability and transportability methods have been developed for
randomized data. When outcome data are available from both randomized stud-
ies and an observational study representative of the target population, their
combination has the potential to overcome sensitivity to positivity violations
for selection into the study (an issue that RCT data commonly face) as well as
to unmeasured confounding (which may afflict observational studies). Incorpo-
rating observational data in a principled manner can also shrink mean squared
error. However, many such approaches do not leverage the internal validity of
RCT data. The following sections will highlight some exceptions. While most
approaches require individual-level study and target sample data, the Appendix
highlights approaches that only use summary-level data for either the study or
target sample.
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5.1 Weighting and matching methods

Methods that adjust for differing baseline covariate distributions between
study and target samples via weighting or matching are particularly effective
when effect modifiers strongly predict selection into the study. While includ-
ing unnecessary covariates can decrease precision, increase the chance of ex-
treme weights and difficult-to-match subjects, and provide no bias reduction
(Nie et al., 2013), failing to include an effect modifier is typically of greater con-
cern than including unnecessary covariates (Stuart, 2010; Dahabreh et al., 2018).
Matching and reweighting methods strongly rely on common covariate support
between study and target populations and perform poorly when a portion of the
target population is not well-represented in the study sample or when empiri-
cal positivity violations occur. Investigators should use the estimation approach
that leads to the best effect modifier balance for their study (Stuart, 2010) and
strive for fewer assumptions.

5.1.1 Matching Full matching and fine balance of covariate first moments
(i.e., expected values) have been used in the generalizability context (Stuart
et al., 2011; Bennett, Vielma and Zubizarreta, 2020). Stuart et al. (2011) fully
match study and target sample individuals based on their propensity scores to
form sets so that each matched set has at least one study and target individ-
ual. Individuals’ outcomes are then reweighting by the number of target sample
individuals in their matched set. This approach relies heavily on the distance
metric used, which can be misled by covariates that don’t affect the outcome.
Fine balance of covariate first moments is a nonparametric approach for larger
data that can also be used with multi-valued treatments (Bennett, Vielma and
Zubizarreta, 2020). This approach matches samples to a target population to
achieve fine balance on the first moments of all covariates rather than working
with the propensity score.

Some implementations of these methods only match a subset of study indi-
viduals (hence show areas of the covariate distribution without common sup-
port), while others ensure all study and target sample individuals are matched.
Matching methods require calibration for bias-variance tradeoff such as via a
caliper or by choosing the ratio of study to target individuals to match. A va-
riety of distance metrics exist; however, none specifically target effect modi-
fiers. With unrepresentative observational data, treatment groups can first be
matched based on confounding variables before matching study pairs to the tar-
get sample based on effect modifiers, or each treatment group can be separately
matched to the target sample (Bennett, Vielma and Zubizarreta, 2020).

5.1.2 Weighting
Post-stratification. In a low-dimensional setting with categorical or binary co-

variates, one can use nonparametric post-stratification (also known as direct ad-
justment or subclassification), as has been done in the literature with random-
ized data (Miettinen, 1972; Prentice et al., 2005) and with observational data in
the context of instrumental variables (Angrist and Fernández-Val, 2013). Post-
stratification consists of obtaining estimates for each stratum of effect modifiers,
then reweighting these estimates to reflect the effect modifier distribution in the
target population, i.e., Ê(Y a) = 1/n

∑L
l=1nl Ȳ

a
l , where L is the number of strata,

nl is the target sample size in stratum l, n =
∑L
l=1nl , and Ȳ al is an estimate from
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study sample data of the potential outcome on treatment a in stratum l, com-
monly the stratum-specific sample mean for subjects on treatment a (Miettinen,
1972; Prentice et al., 2005).

Post-stratification only requires stratum-specific summary data and closed-
form variance formulas are often available. However, empty strata quickly be-
come an issue when dealing with continuous variables or many stratifying vari-
ables. Conversely, if insufficient strata are used, residual external validity bias
will remain, which is particularly problematic in small samples (Tipton et al.,
2017). To combat this, inference can be pooled across strata using multilevel re-
gression with post-stratification (Pool, Abelson and Popkin, 1964; Gelman and
Little, 1997; Park, Gelman and Bafumi, 2004; Kennedy and Gelman, 2019).

For higher dimensional settings or with continuous covariates, more flexible
nonparametric approaches can be applied, such as maximum entropy weight-
ing, where study strata are reweighted to the distribution in the target sam-
ple (Hartman et al., 2015). When target and study populations differ on post-
treatment variables such as adherence, principal stratification can be used to
estimate PATEs by classifying subjects into never-taker, always-taker, and com-
plier categories (Frangakis, 2009).

Estimating using the propensity for study selection. Most weighting approaches
use a propensity of selection regression to construct weights. They rely on cor-
rect specification of the propensity score regression and sufficient overlap in
propensity scores between study subjects and target sample individuals not in
the study. These approaches have the additional advantage of allowing one set
of weights to be used for treatment effects related to multiple outcomes. The
most straightforward weighting approaches tend to have large variances in the
presence of extreme weights, give disproportionate weight to outlier observa-
tions, and produce outcome estimates outside the support of the outcome vari-
able. Weight standardization can address these issues, as can weight trimming,
although the latter induces bias by changing the target population of interest,
hence requiring a careful bias-variance trade-off.

Inverse probability of participation weighting (IPPW), a Horvitz-Thompson-
like approach (Horvitz and Thompson, 1952), is the most common weighting
technique for generalizability (Flores and Mitnik, 2013; Baker et al., 2013; Lesko
et al., 2017; Westreich et al., 2017; Correa, Tian and Bareinboim, 2018; Dahabreh
et al., 2018, 2019a). Most simply, IPPW weights the outcome for each study
individual on treatment a by the inverse probability (propensity) of being in
the study. Weights have been developed for estimating PATEs, including those
that incorporate treatment assignment to account for covariate imbalances in
an RCT or for confounding in an observational study. The observed outcomes
are reweighted to obtain the potential outcomes for each treatment group a:
E(Y a) = 1

n

∑n
i=1wiYi with

wi =
1
πs,i

I(Si = 1)I(Ai = a) for random treatment assignment (Lesko et al., 2017)

wi =
1

πs,iπa,i
I(Si = 1)I(Ai = a) more generally (Stuart et al., 2011; Dahabreh et al., 2019a),

where I(Si = 1) is the indicator for being in the study, I(Ai = a) is the indicator
for being assigned treatment a, πs,i = P (Si = 1|Xi) is the propensity score for
selection into the study and πa,i = P (Ai = a|Si = 1,Xi) is the propensity score for
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assignment to treatment a in the study.
Individual-level data are typically required, although one can also use joint

covariate distributions from group-level data (Cole and Stuart, 2010) or univari-
ate moments (e.g., means, variances) with additional assumptions (Signorovitch
et al., 2010; Phillippo et al., 2018). Because IPPW only uses study individuals on
a given treatment to estimate potential outcomes for that treatment, power can
become an issue, particularly for multi-level treatments. These methods also
perform poorly when study selection probabilities are small, which can be a
common occurrence for generalizability (Tipton, 2013b). IPPW weights have
also been developed for regression parameters in a generalized linear model
(Haneuse et al., 2009), as well as for Cox model hazard ratios and baseline risks
(Cole and Stuart, 2010; Pan and Schaubel, 2008).

For transportability to the target population S = 0, odds of participation
weights are used rather than inverse probability of participation weights (Westre-
ich et al., 2017; Dahabreh et al., 2018). This corresponds to the estimator E(Y a|S =
0) = 1

n

∑N
i=1wiYi with N = n+ns and weights (Dahabreh et al., 2018):

wi =
1−πs,i
πs,iπa,i

I(Si = 1)I(Ai = a).

To address potentially unbounded outcome estimates, standardization then re-
places n by the sum of the weights, which normalizes the weights to sum to
1 (Dahabreh et al., 2018, 2019a). The resulting estimator will be more stable,
bounded by the range of the observed outcomes, and perform better when the
target sample is much larger than the study.

Under regularity conditions, estimates derived using IPPW are consistent and
asymptotically normal (Lunceford and Davidian, 2004; Pan and Schaubel, 2008;
Cole and Stuart, 2010; Correa, Tian and Bareinboim, 2018; Buchanan et al.,
2018). Variance for the IPPW estimator can be obtained through either a boot-
strap approach or robust sandwich estimators. The latter may be difficult to cal-
culate (Haneuse et al., 2009) and bootstrap methods for IPPW have been shown
to perform better when there is substantial treatment effect heterogeneity or
smaller sample sizes (Chen and Kaizar, 2017; Tipton et al., 2017).

Propensity scores can also be used in the context of post-stratification, weight-
ing or matching individuals within strata. RCT individuals are divided into
strata defined by their propensity scores; quintiles are commonly used, based
on results showing that this approach may remove over 90% of bias (O’ Muirc-
heartaigh and Hedges, 2014). Effects are estimated using sample data within
each subgroup, such as through separate regressions or a joint parametric re-
gression with fixed effects for subgroups and interaction terms for subgroups
by RCT status. Results can then be reweighted based on the number of target
sample individuals in each subgroup (O’ Muircheartaigh and Hedges, 2014).
Alternatively, the target sample can be matched to RCT individuals within the
same propensity score stratum (Tipton, 2013b).

The post-stratification estimator is asymptotically normal and closed-form
variance estimates exist for independent strata (O’ Muircheartaigh and Hedges,
2014; Lunceford and Davidian, 2004). Compared to IPPW, strata reweighting is
more likely to be numerically stable and easily implementable when treatment
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assignment is done at the group level (e.g., cluster-randomized trials). However,
stratification implicitly assumes that treatment effects are identical for study
and target patients in the same stratum; this assumption is rarely met, resulting
in residual confounding and inconsistent estimates (Lunceford and Davidian,
2004). It also relies on the assumptions of treatment effect heterogeneity being
fully captured by the propensity score for treatment and that outcomes are con-
tinuous and bounded. With too few strata, bias reduction will be insufficient;
conversely, too many strata can lead to small strata counts and unstable esti-
mates (Stuart, 2010; Tipton et al., 2017).

Propensity strata approaches have also been used to address positivity of
treatment assignment violations within the target sample in the setting where
outcome data are available from both a randomized and observational study
(Rosenman et al., 2018). Rosenman et al. (2020) present an extension which
aims to adjust for potential unmeasured confounding bias.

5.2 Outcome regression methods

5.2.1 Outcome data from one study. Outcome regressions, also known as re-
sponse surface modeling, have not been as extensively developed for generaliz-
ability and transportability compared to propensity-based approaches. Broadly
speaking, outcome regressions approaches fit an outcome regression in study
sample data to estimate conditional means, then obtain PATEs by marginalizing
over (i.e., standardizing to) the target sample covariate distribution by predict-
ing counterfactuals for the target sample: Ê(Y a) = 1

n

∑n
i=1 Ê(Yi |Si = 1,Ai = a,Xi).

If the target sample is not a simple random sample from the target population,
this would be a weighted average using sampling weights (Kim et al., 2018).

Outcome regression approaches are particularly effective when effect modi-
fiers strongly predict the outcome and when the outcome is common but selec-
tion into the study is rare. They are also convenient for exploring PCATEs. These
approaches can yield better precision than weighting or matching-based meth-
ods because they can adjust both for confounders, effect-modifiers, and factors
only predictive of the outcome, thus decreasing variance in the estimate. They
are simple to implement when an outcome regression for confounding adjust-
ment has already been fit and accounts for all relevant effect modifiers. The
same regression that was used to estimate impacts within the study can then be
used to predict counterfactuals in the target sample. Outcome regression meth-
ods can be used with either randomized or observational study data, but have
been used most frequently in RCTs. In the presence of significant non-overlap
between the target and study samples, outcome regressions rely on heavy ex-
trapolation (Kern et al., 2016; Attanasio, Meghir and Szekely, 2003), often with
no corresponding inflation of the variance to reflect uncertainty in the resulting
estimates.

The simplest approach is an ordinary least squares outcome regression (Flo-
res and Mitnik, 2013; Kern et al., 2016; Elliott and Valliant, 2017; Dahabreh
et al., 2018, 2019a). An outcome regression is fit with interaction terms between
treatment and all effect modifiers before predicting counterfactual outcomes for
the target sample (the marginalization step). Dahabreh et al. (2018) showed the
consistency of this type of outcome regression for the PATE. For RCTs, separate
regressions are recommended for each treatment group to better capture treat-
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ment effect heterogeneity (Dahabreh et al., 2019a), although this approach pre-
cludes borrowing information across treatment groups, which is possible with
machine learning methods that discover treatment effect heterogeneity.

Among these machine learning techniques is BART, which is the most com-
monly used data-adaptive outcome regression approach for generalizability and
transportability (Chipman, George and McCulloch, 2007, 2010; Kern et al., 2016;
Hill, 2011). Tree-based methods, including BART, were briefly introduced in
Section 4.3. BART models the outcome as a sum of trees with linear additive
terms and a regularization prior. BART addresses external validity bias via its
data-driven discovery of treatment effect heterogeneity and strengths of the
method include its ability to obtain confidence intervals from the posterior dis-
tribution (Hill, 2011; Green and Kern, 2012). However, BART credible intervals
show undercoverage when the target population differs substantially from the
RCT (Hill, 2011).

Data availability may challenge these outcome regression approaches. When
the covariates in the target sample aren’t available in the study sample, or vice
versa, but the SATE can be expected to be approximately unbiased for the PATE,
the SATE estimates’ credible intervals can be expanded to account for uncer-
tainty in the target population covariate distribution (Hill, 2011).

5.2.2 Outcome data from multiple studies. Here, we consider meta-analytic ap-
proaches for summary-level data as well as studies that combine individual-
level data from more than one study (for example, one randomized and one
observational study). Much of the literature has focused on meta-analytic tech-
niques using summary-level study data and no target sample covariate informa-
tion. This body of bias-adjusted meta-analysis methods largely does not explic-
itly define a target population for whom inference is desired, but rather relies
on subjective investigator judgments of the levels of bias in each study, specified
using bias functions or priors in a Bayesian framework. Eddy (1989) presents
the first such approach, the confidence profile method for combining chains
of evidence. Likelihoods are adjusted for different study designs’ (investigator-
specified) internal and external validity biases; uncertainty around these biases
are incorporated through prior distributions. Various subsequent Bayesian hier-
archical models have been developed, such as a 3-level model (Prevost, Abrams
and Jones, 2000) with the levels corresponding to models of the observed ev-
idence, variability between studies, and variability between study types (ran-
domized vs. observational). When available, covariate information can be added
to the models to address effect heterogeneity. Effectively, this estimator averages
across the internal and external validity biases of the studies and therefore is
only unbiased when the external validity bias in the RCT exactly ‘cancels’ the
internal validity bias in the observational data (Kaizar, 2011).

Other meta-analysis studies leveraging summary-level data separately spec-
ify internal and external validity bias parameters for an explicit target popula-
tion and down-weight studies with higher risk of bias. One such example is the
bias adjusted meta-analysis approach by Turner et al. (2009), which presents a
checklist that subjectively quantifies the extent of internal and external valid-
ity bias for each study and then weighs studies’ average outcomes by the extent
of bias. Greenland (2005) pool across observational case-control studies using a
Bayesian meta-sensitivity model with bias parameters to separately permit con-
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sideration of misclassification, non-response, and unmeasured confounding. In
the intermediate setting where individual-level data is available in the study but
only covariate moments (e.g., means, variances) are available in the target set-
ting, Phillippo et al. (2018) present an outcome regression approach for indirect
treatment comparison across RCTs.

When individual-level outcome data is available in the target sample or from
multiple studies, data can be combined into one joint dataset for outcome re-
gression analysis if the outcome regression can be expected to be the same across
studies (Kern et al., 2016). Such an approach can be preferential to IPPW, which
uses only study and not target sample outcome data (Kern et al., 2016). How-
ever, it will be dominated by observational data results (and their potential bi-
ases) when observational subjects constitute the majority of the joint dataset,
effectively result in a weighted average across studies, weighted by the propor-
tion of subjects in each study.

Hierarchical Bayesian evidence synthesis is the only outcome regression ap-
proach we identified that attempts to empirically adjust for unobserved con-
founding when estimating effects for observational patients who are not well-
represented in the RCTs (Verde et al., 2016; Verde, 2019). Summary-level RCT
data are combined with individual-level observational data through a weight-
ing approach in which the control group event rate is assumed to be similar
across all studies and a study quality bias term is added to the observational
studies’ outcome regression to account for unmeasured confounding or other
uncontrolled biases and to inflate variance. Alternatively, Gechter (2015) derive
bounds on the PATE and PCATE when transporting from an RCT to a target
sample with outcome data (all untreated).

5.3 Combined propensity score and outcome regression methods

5.3.1 Outcome data from one study. Double robust methods for generalizabil-
ity and transportability typically combine outcome and propensity of selection
regressions. They are asymptotically unbiased when at least one of these regres-
sion functions is consistently estimated, and if both are consistently estimated,
asymptotically efficient. However, if neither regression is estimated consistently,
the mean squared error may be worse than using a propensity or outcome re-
gression alone. Incorporation of flexible modeling approaches can help miti-
gate regression misspecification. Three asymptotically locally efficient double
robust approaches have been developed in randomized data: a targeted maxi-
mum likelihood estimator (TMLE) for instrumental variables (Rudolph and van
Der Laan, 2017), which is a semiparametric substitution estimator, the estimat-
ing equation-based augmented inverse probability of participation weighting
(A-IPPW) (Dahabreh et al., 2018, 2019a), and an augmented calibration weight-
ing estimator that can also incorporate outcome information from the target
sample when it is available (Dong et al., 2020).

The TMLE was developed for transportability in an encouragement design
setting (i.e., intervention focused on encouraging individuals in the treatment
group to participate in the intervention) with instrumental variables (Rudolph
and van Der Laan, 2017) and has also been used for generalizability (Schmid
et al., 2020). Three different PATE estimators were developed: intent to treat,
complier, and as-treated. All use an outcome regression to obtain an initial
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estimate, then adjust that estimate with a fluctuation function using a clever
covariate C, which is derived from the efficient influence curve and incorpo-
rates the propensity of selection information in a bias reduction step. For ex-
ample, for the intent to treat PATE, the fluctuation function takes the form:
logit(Ê(Y |S = 1,A,Z,X) + εC), where

C =
I(S = 1,A = a)

P (A = a|S = 1,X)P (S = 1)
P (Z = z|S = 0,A = a,X)P (X |S = 0)
P (Z = z|S = 1,A = a,X)P (X |S = 1)

and Z corresponds to the intervention taken (whereas A corresponds to the as-
signed intervention, as before). The approach allows outcome and propensity
regressions to be flexibly fit, for example, using an ensemble of machine learn-
ing algorithms. Variances are calculated from the influence curve.

A-IPPW has been developed both for generalizing results to estimate PATEs
for all trial-eligible individuals (Dahabreh et al., 2019a,c) and for transporting
results to estimate PATEs for trial-eligible individuals not included in a trial
(Dahabreh et al., 2018). Three double robust estimating equation-based estima-
tors are presented: A-IPPW, A-IPPW with normalized weights that sum to 1 to
ensure bounded estimates, and a weighted outcome regression estimator using
participation weights. The non-normalized A-IPPW estimators are as follows,
with wi the same as for IPPW:

1
n

n∑
i=1

{wi{Yi − Ê(Yi |Si = 1,Ai = a,Xi)}+ Ê(Yi |Si = 1,Ai = a,Xi)} for generalizability

1
n

N∑
i=1

{wi{Yi − Ê(Yi |Si = 1,Ai = a,Xi)}+ {1− I(Si = 1)}Ê(Yi |Si = 1,Ai = a,Xi)} for transportability.

Variance can be derived using empirical sandwich estimates or using a nonpara-
metric bootstrap. As these estimators are partial M-estimators, they can produce
estimates outside bounds if the outcome regression is not well-chosen and they
may have multiple solutions.

Several other double robust estimators for transportability resemble the IPPW
estimator, with sampling weights derived through alternative approaches that
do not rely on propensity scores (Josey et al., 2020a,b; Dong et al., 2020). For
example, the semiparametric and efficient augmented weighting estimator by
Dong et al. (2020) calibrates the RCT covariate distribution to match that of the
sampling-weighted target sample.

An alternative reweighted outcome regression method for observational data
does not claim double robustness and draws from the unsupervised domain
adaptation literature. In general, unsupervised domain adaptation methods aim
to make predictions for a target sample (the “target domain”) when outcomes
are only observed in the study sample (“source domain”). The approach of Jo-
hansson et al. (2018) is a regularized neural network estimator for PCATE pa-
rameters that jointly learns representations from the data and a reweighting
function. Representational learning creates balance between the study and tar-
get covariate distributions and between treated and control distributions in a
representational space so that predictors use information common across these
distributions and focus on covariates predictive of the outcome. In this learned
representational space, results are then re-weighted to minimize an upper bound
on the expected value of the loss function under the target covariate distribu-
tion. Propensity scores can also be used to reweight a likelihood function, as
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done by Nie et al. (2013) in an RCT setting for calibrating control outcomes
from prior studies to the trial target sample. Similarly, Flores and Mitnik (2013)
reweight an outcome regression to the target sample.

5.3.2 Outcome data from multiple studies. Several methods have combined
randomized and observational data sources such that that they retain the in-
ternal validity of the randomized data and the external validity of the target
sample observational data. These approaches broadly rely on the assumption
that the relationship between unmeasured confounders and potential outcomes
is the same in the RCT as in the target sample, which is a weaker assumption
than that of no unmeasured confounding required by most of the methods de-
scribed thus far. One study combined individual-level data from several RCTs
to transport results to the target sample, extending the A-IPPW estimator (as
well as corresponding IPPW and outcome regression estimators) to the multi-
study setting (Dahabreh et al., 2019d). The remainder of the section discusses
approaches that combine randomized and observational data.

When differences in effect modifiers between the RCT and target popula-
tion are known (e.g., by inclusion and exclusion criteria), cross-design synthesis
meta-analysis is a method for combining randomized and observational study
data while capitalizing on the internal validity of the randomized data and the
external validity of the observational data (Begg, 1992; Greenhouse et al., 2017).
It provides a means for estimating treatment effects for patients excluded from
the RCT and can use summary-level RCT data if outcomes are available by rel-
evant patient subgroups, although can only accommodate a limited number of
strata of relevant effect modifiers.

Cross-design synthesis meta-analysis effectively assumes a constant amount
of unmeasured confounding across patients eligible and ineligible for the RCTs
(Kaizar, 2011). This approach will have smaller bias than use of randomized
or observational data alone under various common data scenarios and, across
simulations, shows better coverage through smaller bias and increased variance
(Kaizar, 2011).

When differences between RCT and target populations are less well under-
stood, there are continuous effect modifiers, or a higher dimensional set of effect
modifiers, one can use Bayesian calibrated risk-adjusted regressions (Varadhan,
Henderson and Weiss, 2016; Henderson, Varadhan and Weiss, 2017). This para-
metric approach requires individual-level information from observational and
randomized studies, leveraging outcome regressions and calibration using the
propensity of selection. The target population is assumed to be represented by
a subset of the observational data; the RCT data are likewise assumed to be rep-
resented by a (potentially different) subset of the observational data. The cali-
brated risk-adjusted model performs well when there is poor overlap between
RCT and target data; however, it relies on the observational dataset having sub-
stantial effect modifier overlap with both the target sample and RCT. Robust
variance formulas or bootstrapping can be used to obtain confidence intervals.

A 2-step frequentist approach for consistently estimating PCATE parameters
has been developed to estimate effects in a target population represented by ob-
servational data (Kallus, Puli and Shalit, 2018). It begins with outcome regres-
sions for each treatment group of the observational data, or a flexible regression
that captures effect heterogeneity. Observational data are then standardized to
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the RCT population before ‘debiasing’ their estimates using RCT data by includ-
ing a correction term that can depend on measured covariates. This method re-
lies on the assumption that calibrating internal validity bias in the subset of the
observational data distribution overlapping with RCT data appropriately cali-
brates the bias for the entire target sample. The 2-step approach would therefore
not necessarily decrease bias if the covariate distribution is highly imbalanced,
resulting in average biases that are quite different between the RCT overlapping
vs. nonoverlapping subsets of the target sample.

Lu et al. (2019) present an approach that, unlike the above methods, assumes
no unmeasured confounding in the observational data when combining RCT
and comprehensive cohort study data (where patients who decline randomiza-
tion are enrolled in a parallel observational study). They use semiparametric
double robust estimators that can incorporate flexible regressions.

6. DISCUSSION

Obtaining unbiased estimates for a relevant target population requires ap-
plying generalizability or transportability methods in studies that meet required
identifiability assumptions. The internal validity of randomized trials is not suf-
ficient to obtain unbiased causal effects; external validity also needs to be con-
sidered. In this synthesis, we have discussed (1) sources of external validity bias
and study designs to address it, (2) defining an estimand in a target population
of interest, (3) the identifiability assumptions underpinning generalizability and
transportability approaches, (4) a variety of approaches for quantifying the rel-
evant dissimilarity between study and target samples and assessing treatment
effect heterogeneity, and (5) a variety of matching and weighting methods, out-
come regression approaches, and techniques that use both outcome and propen-
sity regressions that generalize or transport from randomized and observational
studies to a target population. These approaches have been applied across di-
verse settings from RCT results transported to patients represented in registries
to cluster-randomized educational intervention trials generalized to broader ge-
ographic areas. Across a variety of settings, it is important to estimate results
for populations that go beyond the study population. We suggest the following
considerations for researchers.

Make efforts to explicitly define the target population(s) and identify the study
population from which your study sample data is a simple random sample. Describ-
ing the study population may be a difficult task, and there may not be a prac-
tically meaningful population that is representative of your study sample data.
However, this clarity will allow you to compare and, when feasible, better-align
the study sample data to the target population. Discussion regarding target pop-
ulation(s) should be guided by the ensuing decisions the study aims to inform as
well as practical considerations (e.g., lack of certain subgroups in your study).
These considerations may require iteration between feasibility and the desired
study aims as well as careful discussion amidst study collaborators. When com-
bining across studies, meta-analyses should likewise carefully specify target
population(s) for inference and incorporate considerations of treatment effect
heterogeneity or demonstrate that effect heterogeneity is not a concern. Without
transparency in the target population(s), a study cannot estimate well-defined
treatment effects nor can readers judge the generalizability of study results to
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any other population of interest.
Plan for generalization in your study design, when feasible, including writing gen-

eralizability considerations into your grant or study objectives. Enroll randomized
study participants or design observational study inclusion and exclusion crite-
ria to have the study sample be representative of the target population, or fully
capturing the heterogeneity of effect modifiers. Collect data on likely treatment
effect modifiers that are associated with study participation. Attempt to iden-
tify and mitigate potential sources of missingness or selection bias. If possible,
collect baseline characteristics and outcome data on study nonparticipants who
are part of the target population. Otherwise, identify external sources of data
that might inform the composition of your target population with respect to ef-
fect modifiers and work towards aligning variables between these target sample
data sources and your study.

Clearly describe the internal and external validity assumptions needed to identify
the treatment effect as they relate to your study. Substantively assess the justifiabil-
ity of these internal and external validity assumptions. To the extent possible,
test the validity of the assumptions and perform sensitivity analyses to assess
the impact of assumption violations.

Quantify the dissimilarity between the study and target populations using at least
one method. Ideally, use multiple methods, as they each tell different parts of
the story: examine univariate and joint distributions of effect modifiers, differ-
ences in the propensity to participate in the study, and (if outcome information
is available in the target sample) differences in outcomes between study and tar-
get subjects on the same treatment. If differences are identified, one should in-
vestigate which subpopulations drive those differences and assess whether they
have heterogeneous treatment effects. In addition to examining subject charac-
teristics, assess whether differences exist in the setting, treatment, or outcome.

To obtain causal estimates when the target and study populations differ with re-
spect to effect modifiers, incorporate at least one generalizability or transportabil-
ity estimator. Alternatively, at the minimum, assess and describe sources of ef-
fect heterogeneity and whether they’re likely to differ for the target population.
Derive estimates using as much data as possible (e.g., when outcome data is
available, use it in a principled way). The choice of method for external validity
bias adjustment may be restricted by data availability (e.g., summary-level vs.
individual-level data) but should be driven by similar principles as those that
guide the choice between outcome regressions, matching and weighting meth-
ods, and double robust approaches for confounding adjustment (Van der Laan,
Laan and Robins, 2003; Neugebauer and van der Laan, 2005; van der Laan and
Rose, 2011). Flexible nonparametric and semiparametric models and estimators
that use ensemble machine learning minimize the need for strict parametric as-
sumptions and have the potential to perform the best (Kern et al., 2016).

For both methods developers and applied researchers, we recommend releasing
publicly available code alongside the paper and providing details for implementation.
Published code facilitates replicability and accessibility of methods for future
research and applied use. A substantial barrier to the adoption of new statistical
methods, including advances in generalizability and transportability, is the lack
of available computational tools.

While much of the causal inference literature has focused on issues of inter-
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nal validity, both internal and external validity are necessary for valid inference.
When treatment effect heterogeneity exists, as is often the case, study results
may not hold for a target population of interest. Approaches to address inter-
nal validity biases can be borrowed to improve upon methods for addressing
external validity bias. This review presents a framework for such analysis and
summarizes different choices for estimators that can be used to generalize or
transport results to a population different from the one under study. It brings to-
gether diverse cross-disciplinary literature to provide guidance both for applied
and methods researchers. Improving the incorporation of results from observa-
tional studies, including electronic health databases, can lead to better inference
for policy-relevant populations with reduced bias and improved precision.
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APPENDIX: SUMMARY OF METHODS THAT ONLY REQUIRE

SUMMARY-LEVEL DATA

Without access to individual patient data in the study and/or target sam-
ples, investigators will be constrained as to the estimators available to them. The
following estimators can be applied in this setting. Investigators should strive
to maximally use the available data and hence use methods that incorporate
individual-level data where they are available.

Summary-level data for both study (covariate and outcome) and target samples
(covariate). Post-stratification (Miettinen, 1972; Prentice et al., 2005) only re-
quires joint distributions or cell counts for each stratum. Using only study and
target sample means, one could also apply outcome regressions that are linear
in their predictors.

Summary-level outcome data for both study and target samples. Bias-adjusted
meta-analysis approaches by Turner et al. (2009) and Greenland (2005) require
summary-level study outcome data with estimates of bias for each study. When
that summary-level data are stratified by effect modifiers, one can use approaches
by Eddy (1989) and Prevost, Abrams and Jones (2000). If summary-level study
data are stratified by participants included vs. excluded from the study, cross-
design synthesis can be used (Begg, 1992; Kaizar, 2011).

Summary-level covariate and outcome data in the study, individual-level covariate
and outcome data in the target sample. With summary-level study and individual-
level target sample data, one can use hierarchical Bayesian evidence synthesis
(Verde et al., 2016; Verde, 2019).

Individual-level covariate and outcome data in the study, summary-level covariate
data in the target sample. With individual-level study and summary-level target
data, one can use matching with reweighting (e.g., Hartman et al. (2015)), or
Signorovitch et al. (2010) or Phillippo et al. (2018)’s propensity and outcome
regression approaches. When joint distributions of summary-level target sample
data are available, one can use IPPW (Cole and Stuart, 2010; Westreich et al.,
2017).


	1 Background
	2 Estimand
	3 Assumptions
	3.1 Internal validity
	3.2 External validity
	3.3 Transportability

	4 Assessing dissimilarity between target and study populations and testing for treatment effect heterogeneity
	4.1 Assessing dissimilarity between populations using baseline characteristics
	4.2 Assessing dissimilarity between populations using outcomes
	4.3 Testing for treatment effect heterogeneity 

	5 Generalizability and transportability methods for estimating population average treatment effects
	5.1 Weighting and matching methods
	5.1.1 Matching
	5.1.2 Weighting

	5.2 Outcome regression methods
	5.2.1 Outcome data from one study. 
	5.2.2 Outcome data from multiple studies.

	5.3 Combined propensity score and outcome regression methods
	5.3.1 Outcome data from one study.
	5.3.2 Outcome data from multiple studies.


	6 Discussion
	7 Acknowledgments
	References
	Appendix: Summary of methods that only require summary-level data

