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Abstract

An important consideration in clinical research studies is proper evaluation of internal and external

validity. While randomized clinical trials can overcome several threats to internal validity, they may

be prone to poor external validity. Conversely, large prospective observational studies sampled from a

broadly generalizable population may be externally valid, yet susceptible to threats to internal validity,

particularly confounding. Thus, methods that address confounding and enhance transportability of study

results across populations are essential for internally and externally valid causal inference, respectively.

We develop a weighting method which estimates the effect of an intervention on an outcome in an

observational study which can then be transported to a second, possibly unrelated target population.

The proposed methodology employs calibration estimators to generate complementary balancing and

sampling weights to address confounding and transportability, respectively, enabling valid estimation

of the target population average treatment effect. A simulation study is conducted to demonstrate

the advantages and similarities of the calibration approach against alternative techniques. We also

test the performance of the calibration estimator-based inference in a motivating real data example

comparing whether the effect of biguanides versus sulfonylureas - the two most common oral diabetes

medication classes for initial treatment - on all-cause mortality described in a historical cohort applies

to a contemporary cohort of US Veterans with diabetes.
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1 Introduction

Two common and related problems in statistics involve causal inference and generalizing study results to a

population of interest. For the former, the principal barrier is confounding associated with the exposure or

treatment variable. One solution might be to conduct a randomized trial, but a randomized trial is impracti-

cal in many scientific and medical contexts. Therefore, methods for causal inference from observational data

are essential. Even when valid causal inference can be drawn from a study, generalization is often limited

by the difficulty of randomly sampling from the population of interest. The population that is sampled from

in an observational study or randomized trial - i.e. the study population - might diverge from the specific

population of interest for applying the study results – i.e. the target population. For example, the population

of patients with a given disease may differ across important characteristics from the population receiving a

specific intervention for that disease. In this simplistic scenario, extending valid inferences which evaluate

the efficacy of the intervention to the targeted population containing every patient with the disease may

be of interest. Throughout this manuscript we focus on a particular yet well-defined setup for generalizing

results onto a target population known as transportability (Pearl and Bareinboim, 2014).

Methods for causal inference and transporting effect estimates to a target population have been a recent

topic of much interest in the statistical literature. Our goal is to combine methods found in these two respec-

tive areas in order to minimize bias due to confounding, which is unavoidable in observational studies, and to

account for differences between study and target populations that could influence the causal effect estimate

on the population of interest. The propensity score, or the probability of exposure given a set of measured

covariates, has emerged as a popular tool in causal inference as the basis for balancing the distribution of

confounders between the exposed and unexposed participants in an observational study (Rosenbaum and

Rubin, 1983). A closely related approach models the probability of being sampled for a study as opposed to

the probability of receiving a treatment in order to transport the results of a randomized trial onto a target

population (Westreich et al., 2017). Extensions and comparisons of these methods for transporting results

from an observational study are more limited, with most methods opting to focus on transporting results

from a randomized controlled trial onto a population characterized by an observational cohort. Moreover,

there is limited discussion on extensions for many of these methods to reconcile multiple observational studies

which examine the same exposure/outcome relationship - a closely related problem which we will refer to

as data-fusion (Bareinboim and Pearl, 2016). Further compounding the issue, fitting parametric models of

the probability of treatment and inverse odds of sampling with maximum likelihood estimation has several

limitations in cases where model misspecification is rife and leads to problems in finite samples (Kang and

Schafer, 2007). Therefore, estimation procedures that complement new methodological developments that

overcome these limitations would be desirable when transporting causal effect estimates from observational

studies.

Calibration estimators (Deville and Särndal, 1992) have had recent success in both transporting causal

effects from a randomized controlled trial to a target population and estimating causal effects using obser-
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vational data. We propose combining the approach of Chan et al. (2015), which finds balancing weights that

correct for treatment group heterogeneity, with an exponential tilting function that estimates the sampling

weights, which removes bias present between the study participants and non-participants sampled from the

target population (Signorovitch et al., 2010). A similar exponential tilting function was used to generalize

results of a randomized controlled trial onto an observational cohort by Dong et al. (2020). Their solution

estimates the target population average treatment effect using a class of estimators that augment the treat-

ment assignment and sampling indicator models with an outcome model (Robins et al., 1994). By contrast,

we avoid any attempt to identify the outcome process and instead emphasize efforts to identify the true

sampling and treatment processes in the spirit of Rubin (2008). In our experience, the exercise of identifying

potential confounders that contribute to sampling and treatment selection bias is more straightforward than

identifying the potential variables that affect the outcome in many statistical applications. If there is some

conflict in attempting to specify both models correctly, then correct specification of the sampling and treat-

ment assignment models should take priority over correctly specifying the outcome model. Regardless of the

design choices, we show that our so-called full calibration approach is doubly-robust, meaning that if either

the outcome model is correctly specified or the probability of treatment assignment and the probability of

being sampled are correctly specified, then the average treatment effect estimator is consistent. We also

show how the full calibration approach can be adapted to solve the data-fusion problem of combining two

observational studies that compare the same exposure and response.

In addition to the proposed full calibration approach, we adapt and examine two other methods for

transporting causal effect estimates using observational data. One of these methods is the augmented

estimator proposed by Dong et al. (2020), which we have already mentioned. The other method uses the

targeted maximum likelihood estimation framework and is discussed by Rudolph and van der Laan (2017).

Each of these methods are doubly-robust given certain assumptions about the data generating processes,

although they require differing degrees of parametric assumptions to achieve this property. The targeted

maximum likelihood approach makes the fewest parametric assumptions while the full calibration approach

makes the most parametric assumptions. Having fewer parametric assumptions allows for more intricate

modeling choices, including machine learning techniques. However, as opposed to the targeted maximum

likelihood and augmented approaches, the parametric nature of the full calibration approach allows us to relax

the assumption of propensity score exchangeability. Propensity score exchangeability assumes the propensity

score is the same across populations. We acknowledge that no single modeling approach will perform best

universally in any given observational study but are nevertheless interested in identifying scenarios where

one approach may be better suited than the others. With these considerations in mind, a summary of our

primary aims are as follows:

• Derive a full calibration approach for transporting observational study results across populations while

relaxing the requirement of propensity score exchangeability;

• Extend two other doubly-robust methods for transporting treatment effect estimates to accommodate
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observational data while varying the parametric assumptions about the data generating processes;

• Examine extensions of methods for transportability to solve the problem of data-fusion;

• Compare the three doubly-robust methods for transportability identified throughout in a simulation

study.

• Apply the full calibration approach to a study comparing mortality rates for diabetic patients prescribed

either a sulfonylurea or metformin monotherapy.

The remainder of this article is structured as follows. In Section 1.1 is a motivating dataset that we will

analyze in Section 6 to provide some context to the problem of transportability. In Section 2 we introduce

the notation, assumptions, and previous methods for transporting causal effects, which are adapted to make

use of observational data. In Section 4 we introduce a calibration approach to transporting results from

observational studies. In Section 5, we compare the full calibration approach with the methods we will

have described in Section 2. Section 6 contains a data analysis of the illustrative example from the dataset

introduced in Section 1.1. Finally, we conclude with a discussion in Section 7.

1.1 Motivating Dataset

To help showcase the solutions we propose, we will address two aspects of treatment of type 2 diabetes for

which there is limited head-to-head clinical trial data. First, we will compare the effectiveness of monotherapy

with metformin and sulfonylureas as first-line treatment for type 2 diabetes mellitus in a cohort of patients

receiving care in the US Veterans Affairs Healthcare System (VA). Metformin is a member of the biguanide

class of oral diabetes medications and is the most commonly used initial treatment for type 2 diabetes in the

United States (Desai et al., 2012; Berkowitz et al., 2014; Hampp et al., 2014). Sulfonylureas are a class of

oral diabetes medications that comprise the next most commonly used initial treatments for type 2 diabetes

in the United States.

Despite their long-time use for the treatment of type 2 diabetes, head-to-head comparisons have been

inconclusive regarding the effects of metformin and sulfonylureas on clinical outcomes such as cardiovascu-

lar events and mortality. Results of observational studies have conflicted, and meta-analyses have drawn

attention to risk of bias in the observational studies (Azoulay and Suissa, 2017). That said, several of the

larger observational studies considered at low-risk of bias reach a similar conclusion: that sulfonylurea use

is associated with higher mortality and cardiovascular risk than metformin (Schramm et al., 2011; Roumie

et al., 2012; Wheeler et al., 2013). Similarly, randomized trials have been contradictory, though most were

not designed to address a direct comparison of the two oral diabetes medication classes (Varvaki Rados et al.,

2016). As with the observational studies, however, the randomized trials raise a safety concern regarding the

use of sulfonylureas, particularly with regard to cardiovascular disease and cardiovascular mortality, though

not always reaching the prespecified threshold for statistical significance (Hong et al., 2013; Varvaki Rados
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et al., 2016). The development and approval of a number of new type 2 diabetes medications in the last

several years with particular benefit in individuals with or at high-risk for cardiovascular disease (Zinman

et al., 2015; Marso et al., 2016a,b; Neal et al., 2017; Holman et al., 2017) has diversified the treatment options

available to patients and providers, prompting a reevaluation of the comparative effectiveness of metformin

and sulfonylureas. Moreover, the population of diabetes patients has changed temporally with regard to

cardiovascular disease prevalence and risk factor control (Ali et al., 2013; Selvin et al., 2014; Gregg et al.,

2014; Geiss et al., 2014; Gregg et al., 2018; Cheng et al., 2018; Raghavan et al., 2019), which could affect

associations of metformin and sulfonylureas with outcomes in contemporary diabetes patient cohorts.

As a basis for analyses in this paper, we use Wheeler et al. (2013), which found that US military veter-

ans with diabetes receiving sulfonylurea treatment were at higher risk of mortality than patients receiving

metformin after adjusting for potential confounders. Even before the publication of these results, the use

of sulfonylureas began to decrease dramatically within VA hospitals due to the recognition that metformin

had lower marginal risk of adverse outcomes as compared to sulfonylureas in a more general population

(Johnson et al., 2002). Concurrent with this reduction in sulfonylurea use were the aforementioned changes

in the population of veterans receiving care for diabetes, particularly with regard to cardiovascular disease

prevalence and risk factor control (Ali et al., 2013; Selvin et al., 2014; Gregg et al., 2014; Geiss et al., 2014;

Gregg et al., 2018; Cheng et al., 2018; Raghavan et al., 2019). Using data available from 2004-2009, which

overlaps with the cohort analyzed by (Wheeler et al., 2013), we will transport the risk difference of mortality

among newly diagnosed patients receiving initial monotherapy with either a sulfonylurea or metformin to a

more contemporary cohort of diabetes patients diagnosed between 2010-2014. We also find the data-fusion

estimates of the 2010-2014 risk difference using the combined 2004-2009 and 2010-2014 cohorts. Patients

initialized between 2004 and 2009 fall into a date range when sulfonylurea monotherapy was a more widely

prescribed method of treatment. The subsequent years saw a dramatic decrease in sulfonylurea use as a

monotherapy. The decrease in sulfonylurea is an obvious signal of a propensity score exchangeability viola-

tion, thus requiring more flexible methods such as the full calibration approach that can accommodate such

circumstances.

Splitting this dataset into separate cohorts has two main advantages for illustrative purposes. First, we

can obtain consistent effect estimates on the 2010-2014 sample without using data from 2004-2009. This

estimate will provide a benchmark for both the transported estimate from the 2004-2009 cohort and for

the data-fusion estimate. The second advantage has to do with the structure of the data. The difference

between cohorts will be small given the close proximity of the time intervals, ensuring that the sampling

positivity assumption holds (defined in Section 2.2). Both cohorts belong to the same superpopulation, i.e.

newly diagnosed veterans receiving care at the VA, with the only differences being related to the temporal

trends observed in the covariates. Further adding to the strong overlap and completeness of the data, both

cohorts contain a large number of patients lending to more accurate estimates.

As a counterpoint to the example transporting results within the VA system across two temporally distinct
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cohorts, we will also apply the methods developed in this paper to transport results from a randomized

trial comparing two diabetes treatment strategies, the Bypass Angioplasty Revascularization Investigation 2

Diabetes (BARI 2D) trial, to the aforementioned 2010-2014 cohort of veterans with diabetes (The BARI 2D

Study Group (2009)). The BARI 2D trial attempted to address a second pressing knowledge gap pertaining to

type 2 diabetes treatment: whether diabetes patients with coronary artery disease (CAD), the most common

underlying cause of mortality for diabetes patients (Rao Kondapally Seshasai et al., 2011), benefited from

an insulin sensitization or insulin provision strategy for treating their diabetes. Thus, the BARI 2D trial

randomized diabetes patients with known CAD to receive either an insulin sensitization strategy (largely

treatment with metformin) or an insulin provision strategy (treatment with sulfonylureas and/or insulin).

Given the importance of optimal glycemic management in the particularly high-risk population of diabetes

patients with CAD, evaluating transportability of results from BARI 2D to a real-world population of VA

diabetes patients could provide applicable insight into diabetes population health management within the

VA health system.

2 Setting and Preliminaries

2.1 Notation and Definitions

The setup for transportability and data-fusion with observational data requires - first and foremost - data

from two separate observational studies. Define Si ∈ {0, 1} as a sampling indicator denoting whether the

independent sampling unit i = 1, 2, . . . , n is a study non-participant or participant. We will refer to units

i ∈ {i : Si = 1} as sample A and units i ∈ {i : Si = 0} as sample B. We denote n1 =
∑n
i=1 Si and

n0 =
∑n
i=1(1 − Si) with n = n1 + n0. We suppose that the non-participants in sample B represent a

random sample from the target population, the population we would like to infer upon, whereas sample A

is a representative sample of the study population.

For each i = 1, 2, . . . , n, let Xi ∈ X denote a vector of measured covariates, Yi ∈ < denote the outcome,

and Zi ∈ {0, 1} denote the treatment assignment. We employ the potential outcomes framework (Rubin,

1974) to construct the causal estimand of interest and the assumptions for transportability (Lesko et al.,

2017). Let Yi(0) denote the potential outcome when Zi = 0 and Yi(1) denote the potential outcome when

Zi = 1. This means the observed outcome is equivalent to Yi ≡ ZiYi(1)+(1−Zi)Yi(0). The target population

average treatment effect is defined as τ0 ≡ E[Yi(1)− Yi(0)|Si = 0].

Conditioned on Xi, we set ρ(Xi) ≡ Pr{Si = 1|Xi}, π1(Xi) ≡ Pr{Zi = 1|Xi, Si = 1}, and π0(Xi) ≡

Pr{Zi = 1|Xi, Si = 0} for all i = 1, 2, . . . , n. Note that the probability of treatment conditioned on the

sample indicator and covariates can be alternatively expressed as

π(Si,Xi) ≡ Siπ1(Xi) + (1− Si)π0(Xi).

Define {cj(X); j = 1, 2, . . . ,m} as the set of functions that generate linearly independent features to be
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balanced between treatment groups and the samples A and B. We will refer to these quantities as balance

functions. Furthermore, we will assume c1(Xi) = 1 for all i = 1, 2, . . . , n throughout. The target sample

moments of the balance functions are defined as θ̂j = n−10

∑n
i=1(1−Si)cj(Xi), which is a consistent estimator

for θj ≡ E[cj(Xi)|Si = 0] for all j = 1, 2, . . . ,m.

2.2 Assumptions for Transportability and Data-Fusion

Under the potential outcomes model and given the definitions listed in the previous section, we may begin

to develop the setting for which transportability and data-fusion are feasible using observational data (Pearl

and Bareinboim, 2014; Bareinboim and Pearl, 2016). We frame the setup to both problems through the

following set of assumptions which require several conditions which the data generating mechanisms for

(Si,Xi, Yi, Zi) must satisfy. These assumptions are an extension to those proposed in other articles regarding

the transportability of experimental results across populations (Rudolph and van der Laan, 2017; Dong et al.,

2020). We combined these assumptions with the assumptions necessary for conducting causal inference in

the presence of treatment group heterogeneity (Rubin, 1974).

Assumption 1 (Strongly Ignorable Treatment Assignment). The potential outcomes among both the study

participants and the study non-participants are independent of the treatment assignment given Xi:

[Yi(0), Yi(1)]T ⊥⊥ Zi|(Xi, Si) for all i = 1, 2, . . . , n.

Assumption 2 (Mean Exchangeability). Among all independent sampling units in either sample A or B,

the expected value of the potential outcomes conditioned on the covariates are exchangeable: E[Yi(1)|Xi, Si] =

E[Yi(1)|Xi] and E[Yi(0)|Xi, Si] = E[Yi(0)|Xi] for all i = 1, 2, . . . , n.

Assumption 3 (Sampling Positivity). The probability of study participation, conditioned on the baseline

covariates necessary to ensure Assumption 2, is bounded away from zero and one:

0 < Pr{Si = 1|Xi} < 1 for all i = 1, 2, . . . , n.

Assumption 4 (Treatment Positivity). The probability of treatment conditioned on the baseline covariates,

and given the two samples, is bounded away from zero and one:

0 < Pr{Zi = 1|Xi, Si} < 1 for all i = 1, 2, . . . , n.

The distinction between transportability and data-fusion essentially amounts to how much data we are

provided from sample A and sample B. For problems of transportability, we require the complete individual-

level data from sample A, but only the individual-level covariate data from sample B (i.e. Xi for all

i ∈ {i : Si = 0}). There is another setting for transportability wherein we only require the sample moments

of the covariates from sample B. However, this scenario is fraught with challenges, particularly for inference

involving a population-level estimand (Josey et al., 2020a). We leave any further discussion of this setting for
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Section 7. In data-fusion, both samples A and B provide (Xi, Yi, Zi) for all i = 1, 2, . . . , n. It should not be

a surprise that the latter setting is more powerful given the additional data. However, in many data analysis

applications, Yi and Zi are not available from sample B, leaving data-fusion infeasible yet transportability

as an appealing alternative.

In addition to Assumptions 2-4, the following set of assumptions is needed to establish the double-

robustness property of the proposed full calibration estimator. For more context, we will show that if either

Assumption 5 is satisfied or both Assumptions 6 and 7 hold, then the full calibration estimator proposed in

Section 4 is consistent.

Assumption 5 (Conditional Linearity for the Potential Outcomes). The expected value of the potential

outcomes, conditioned on Xi, is linear across the span of the covariates: E[Yi(1)|Xi] =
∑m
j=1 cj(Xi)βj and

E[Yi(0)|Xi] =
∑m
j=1 cj(Xi)αj for all i = 1, 2, . . . , n and αj , βj ∈ < for all j = 1, 2, . . . ,m.

Assumption 6 (Conditional Linear Log-Odds for Sampling). The log-odds of being in sample A versus

sample B are linear across the span of the covariates: logit[ρ(Xi)] =
∑m
j=1 cj(Xi)γj for all i = 1, 2, . . . , n

and γj ∈ < for all j = 1, 2, . . . ,m.

Assumption 7 (Conditional Linear Log-Probability for Treatment). The log-probability of treatment in

sample A and B are linear across the span of the covariates:

log[π(Si,Xi)] = Si

m∑
j=1

cj(Xi)δj1 + (1− Si)
m∑
j=1

cj(Xi)λj1

and

log[1− π(Si,Xi)] = Si

m∑
j=1

cj(Xi)δj0 + (1− Si)
m∑
j=1

cj(Xi)λj0

for all i = 1, 2 . . . , n where δj0, δj1, λj0, λj1 ∈ < for all j = 1, 2, . . . ,m.

The alternative methods presented in Section 3 require similar assumptions, although we will be able

to relax the linearity conditions found in Assumptions 5-7. We will see later on that these alternative

methods require an additional assumption regarding the scenario when the outcome model is misspecified

in order to remain consistent. This additional consideration is referenced in Assumption 8. Propensity score

exchangeability is not required for our proposed method in lieu of Assumptions 6 and 7. Verifying this

assumption is not so much of an issue for transporting observational study results since Zi should not exist

for any i ∈ {i : Si = 0}, allowing for speculation about π0(Xi). In this scenario, it is natural to assume that

treatment assignment is the same in both samples. In data-fusion, where Zi is observed for all i = 1, 2, . . . , n

however, this assumption is often violated.

Assumption 8 (Propensity Score Exchangeability). For all Xi ∈ X , we have π1(Xi) = π0(Xi).
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3 Previous Methods for Transportability Extended for Observa-

tional Data

Targeted maximum likelihood estimation (TMLE) has emerged as a flexible framework for estimating a

variety of causal estimands (van der Laan and Rubin, 2006). Specifically, Rudolph and van der Laan (2017)

apply this framework to estimate τ0 within the transportability setting described in Section 2.2. TMLE is

solved in an iterative manner by initially finding µ̂1(Xi) and µ̂0(Xi) using the independent sampling units

i ∈ {i : Si = 1}, which estimate µ1(Xi) and µ0(Xi), respectively. If we were to stop here, we could formulate

the G-computation approach for estimating τ0 by solving for

τ̂G =
1

n0

∑
{i:Si=0}

[µ̂1(Xi)− µ̂0(Xi)] .

If we can show µ̂1(Xi)→p µ1(Xi) and µ̂0(Xi)→p µ0(Xi), then τ̂G →p τ0. Rudolph and van der Laan (2017)

extend this intuitive approach in an attempt to account for potential bias induced from misspecifying µ̂1(Xi)

and µ̂0(Xi). Their solution updates the estimates of the conditional means of the potential outcome using

consistent estimates of ρ(Xi) and π1(Xi), which we denote as ρ̂(Xi) and π̂1(Xi). The estimators ρ̂(Xi) and

π̂1(Xi) are combined into a so-called clever covariate (Schuler and Rose, 2017) to find

µ̃0(Xi) = µ̂0(Xi) + ε̂0
(1− Zi)[1− ρ̂(Xi)]

ρ̂(Xi)[1− π̂1(Xi)]

µ̃1(Xi) = µ̂1(Xi) + ε̂1
Zi[1− ρ̂(Xi)]

ρ̂(Xi)π̂1(Xi)
.

(1)

Estimates of ε0 and ε1 are found by regressing the clever covariate onto the outcome with the initial mean

predictions serving as offsets among the units i ∈ {i : Si = 1}. The final TMLE estimate of τ0 has a similar

form to the G-computation setup, which involves solving for

τ̂TMLE =
1

n0

∑
{i:Si=0}

[µ̃1(Xi)− µ̃0(Xi)] ,

while ignoring the indicators Zi that appear in the clever covariates of (1). Given assumptions 1-4, Rudolph

and van der Laan (2017) show that the TMLE estimator is doubly-robust if either µ̂1(Xi) →p µ1(Xi)

and µ̂0(Xi) →p µ0(Xi) or ρ̂(Xi) →p ρ(Xi) and π̂1(Xi) →p π0(Xi). For the latter scenario, an implicit

assumption for the method to achieve double-robustness is Assumption 8.

Another doubly-robust method originally intended for generalizing experimental data is an augmented

estimator which combines a treatment, sampling, and outcome model, similar to the clever covariates found

in TMLE (Dong et al., 2020). We present the augmented approach with slight alterations to the estimator

presented by Dong et al. (2020) so as to be relevant for the transportability setting. The setup to the

problem solved by Dong et al. (2020) assumes that each unit in the target sample is prescribed a vector of

known sampling weights. This in turn facilitates inference on the combined population containing samples

A and B (i.e. the target population). Our setup to the problem, on the other hand, assumes that the target

9



sample, i.e. sample B, is drawn uniformly from a target population. The distinction can be drawn from

the implication that the target population may differ from the superpopulation. The problem they describe

is more akin to generalizability (Cole and Stuart, 2010) over a finite population whereas our focus is on

transportability within a superpopulation framework.

The augmented approach to transporting observational study results proceeds by deriving estimators

for the component models that generate (Si, Yi, Zi) given Assumptions 1-4. While several estimators for

π̂1(Xi), µ̂0(Xi), and µ̂1(Xi) will suffice, the inverse odds of sampling are specifically estimated by solving

the Lagrangian dual,

γ̂ = arg max
γ∈<m

∑
{i:Si=1}

− exp

−Si m∑
j=1

cj(Xi)γj

− m∑
j=1

θ̂jγj

 , (2)

where γ ≡ (γ1, γ2, . . . , γm)T . A Lagrangian dual is an unconstrained optimization objective derived by

applying the Lagrangian multiplier theorem to a constrained convex optimization problem. In the case of

(2), the constrained optimization, or primal problem, seeks to

minimize

n∑
i=1

q(Xi) log [q(Xi)]− q(Xi)

subject to

n∑
i=1

Siq(Xi)cj(Xi) =

n∑
i=1

(1− Si)cj(Xi) for all j = 1, 2, . . . ,m.

(3)

The dual solution to (2) can be found using Lagrangian multipliers to be

q̂(Xi) = exp

−Si m∑
j=1

cj(Xi)γ̂j

 (4)

for all i = 1, 2, . . . , n, which is the primal solution to (3) (i.e. the sampling weight estimates). The estimated

sampling weights have the property that
∑n
i=1 Siq̂(Xi)cj(Xi) =

∑n
i=1(1−Si)cj(Xi) for all j = 1, 2, . . . ,m. In

other words, the weighted sample moments of the balance functions in sample A are equal to the unweighted

sample moments of the balance functions in sample B. This estimator of the inverse odds of sampling weights

was suggested by Signorovitch et al. (2010) as a pre-processing step for comparing outcomes in two clinical

trials when sample heterogeneity is present.

Given the estimated sampling weights, the conditional mean estimates of the potential outcomes, and

the probability of treatment model, Dong et al. (2020) construct an augmented estimator for the target

population average treatment effect which solves for

τ̂AUG =
1

n1

∑
{i:Si=1}

q̂(Xi)

[
Zi[Yi − µ̂1(Xi)]

π̂1(Xi)
− (1− Zi)[Yi − µ̂1(Xi)]

1− π̂1(Xi)

]
+

1

n0

∑
{i:Si=0}

[µ̂1(Xi)− µ̂0(Xi)] . (5)

Under assumptions 1-4, the augmented estimator τ̂AUG is shown to be doubly-robust by Dong et al. (2020).

We can easily see this result given the following heuristic. In the scenario where µ̂0(Xi) →p µ0(Xi) and

µ̂1(Xi) →p µ1(Xi), and given Assumption 2, the first sum in (5) has an expected value of zero while

the second sum is consistent for τ0 as n → ∞. In the scenario where π̂1(Xi) → π0(Xi) and q̂(Xi) →
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[1 − ρ(Xi)]ρ(Xi)
−1, which requires Assumptions 6 and 8 to hold, then the first sum in (5) is consistent for

the bias produced by the second sum as n approaches infinity.

Through Assumption 2, and given that Yi and Zi are observed for all i = 1, 2, . . . , n, Dong et al. (2020)

extend their estimator to use all available data by estimating µ̂0(Xi) and µ̂1(Xi) over all i = 1, 2, . . . , n.

The result provides a solution to the data-fusion problem without changing the estimator in (5). A similar

approach is considered by Lu et al. (2019) for generalizing experimental results. As we have previously

mentioned, a major issue with the augmented and TMLE approaches for integrating two datasets is the re-

quirement of Assumption 8. In scenarios where this assumption is violated, the issue is most apparent within

the data-fusion setting whenever the outcome model is misspecified. Without propensity score exchangeabil-

ity, i.e. π1(Xi) 6= π0(Xi), the first summation in (5) will not consistently estimate the bias induced by the

second summation, even when the sampling model is correctly specified. There may be several workarounds

to this issue using the augmented estimator. However, they may require stronger assumptions to the under-

lying models for Si and Zi, like those of Assumptions 6 and 7. We defer further discussion of this issue to

Section 7.

4 A Full Calibration Approach to Transportability

Our solution to the problem of transporting observational study results combines the calibration estimator

approach of Chan et al. (2015), which finds balancing weights that correct for treatment group heterogeneity,

with a vector of estimated sampling weights, which removes bias induced by the differences of the covariate

distribution between samples A and B (Signorovitch et al., 2010). In other words, we estimate both a

vector of balancing weights and a vector of sampling weights which, when estimated in tandem, allow for

consistent estimation of the target population average treatment effect. A quick breakdown of the procedure

is as follows. First, we balance the study and target sample covariate moments by estimating the sampling

weights. Second, we estimate balancing weights on sample A given the estimated sampling weights from the

previous step. Finally, we estimate the target population average treatment effect using a Horvitz-Thompson

type estimator (Horvitz and Thompson, 1952).

Fortunately, the first step of estimating the sampling weights is solved in the exact same manner suggested

in Signorovitch et al. (2010) by finding (2) and (4). The second step is to compute balancing weights that

mitigate treatment group heterogeneity by solving for

λ̂0 = arg max
λ∈<m

∑
{i:Si=1}

−q̂(Xi)

m∑
j=1

θ̂jλj − q̂(Xi) exp

−(1− Zi)
m∑
j=1

cj(Xi)λj


λ̂1 = arg max

λ∈<m

∑
{i:Si=1}

−q̂(Xi)

m∑
j=1

θ̂jλj − q̂(Xi) exp

−Zi m∑
j=1

cj(Xi)λj


(6)

where λ0 ≡ (λ10, λ20, . . . , λm0)T , and λ1 ≡ (λ11, λ21, . . . , λm1)T . The resulting balancing weights are esti-
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mated with

p̂(Xi) = q̂(Xi) exp

−(1− Zi)
m∑
j=1

cj(Xi)λ̂j0 − Zi
m∑
j=1

cj(Xi)λ̂j1

 (7)

for all i ∈ {i : Si = 1}. To estimate the target population average treatment effect, we use a Horvitz-

Thompson type estimator (Horvitz and Thompson, 1952) which solves for

τ̂CAL =
∑

{i:Si=1}

p̂(Xi)(2Zi − 1)Yi∑
{i:Si=1} p̂(Xi)Zi

. (8)

Recall that for transportability we are presented with (Xi, Yi, Zi) for sample A, but only Xi in sample B.

Hence the index set {i : Si = 1} for the summations in (6)-(8).

Much like with the primal-dual relationship between (2) and (3), the dual problem in (6) corresponds to

the following primal problem:

minimize

n∑
i=1

p(Xi) log

[
p(Xi)

q̂(Xi)

]
− p(Xi) + q̂(Xi)

subject to

n∑
i=1

Si(1− Zi)p(Xi)cj(Xi) =

n∑
i=1

Siq̂(Xi)cj(Xi) and

n∑
i=1

SiZip(Xi)cj(Xi) =

n∑
i=1

Siq̂(Xi)cj(Xi) for all j = 1, 2, . . . ,m.

(9)

The reasoning for using the relative entropy objective function in (9) is its ability to produce balancing

weights which have the same functional form as the inverse probability of treatment weights when the

probability of treatment is modeled with a log-linear model. If we suppose that Assumption 6 holds, then

(2) and (4) is an unbiased estimator for [1− ρ(Xi)]ρ(Xi)
−1. Coupled with this result and given Assumption

7, (6)-(7) produces unbiased estimates for π0(Xi) and 1− π0(Xi). Another calibration weighting estimator

can be found by replacing the relative entropy distance in (9) with the shifted relative entropy (Josey et al.,

2020b). The resulting balancing weights using this distance are analogous to the calibration version of the

inverse probability of treatment weights, which assume the probability of treatment follows a logistic model.

However, we found the approach using (6) and (7) to be more stable and computationally faster.

The balancing weights from (7) represent the generalized projection of the objective entropy curve onto

the linear hyperspace that satisfies the condition
∑n
i=1 SiZip̂(Xi)cj(Xi) =

∑n
i=1 Siq̂(Xi)cj(Xi) for all j =

1, 2, . . . ,m. Consequently, the balancing weights achieve exact balance between the treatment-specific sample

moments of the covariate distribution in sample A and the covariate sample moments of sample B because∑n
i=1 Siq̂(Xi)cj(Xi) =

∑n
i=1(1 − Si)cj(Xi). Combining the results of the sampling and balancing weights

with their unbiasedness for ρ(Xi) and π0(Xi) allows us to apply M-estimation techniques (Stefanski and

Boos, 2002) to show that the double-robustness property holds. Additional details for constructing inferences

regarding τ0 with τ̂CAL is contained within the Appendix.

Recall that for the data-fusion setting, we are provided (Xi, Yi, Zi) (i = 1, . . . , n) for both samples A and

B. Given the setup we describe in Section 4, we may estimate λ̂0 ∈ <m and λ̂1 ∈ <m over all i = 1, 2, . . . , n
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in (6) instead of for only i ∈ {i : Si = 1}. This means that (7) exists for all i = 1, 2, . . . , n and we can

estimate (8) over the combined samples A and B by simply changing the index of the summations to account

for all i = 1, 2, . . . , n.

5 Simulation Study

5.1 Simulation Setup

To demonstrate the efficacy of the different methods for transportability and data-fusion, we will conduct a

simulation study that evaluates the performance of the three doubly-robust methods we have identified in

Sections 3 and 4. As was done in multiple other published articles (Lunceford and Davidian, 2004; Kang and

Schafer, 2007), we will test the performance of our proposed methodologies across a range of scenarios which

focus on model misspecification. When evaluating methods for transporting observational study results to

different populations, we must consider possibilities where the sampling, treatment, and/or the outcome

models are misspecified. At the same time, we will adhere to Assumptions 1-4. We will compare the full

calibration estimator proposed in Section 4 with the TMLE and augmented estimators described in Section

3. We also considered estimators for τ0 under the data-fusion setting, where both samples A and B have

observed treatments and responses - these extensions are for τAUG and τCAL which account for the additional

data.

For the sake of presentation, we have described the full calibration estimator in sequential terms by

estimating the sample weights preceded by estimation of the balance weights. We found that fitting the

sampling and balancing weights in parallel yielded better results. To estimate the combined weights in

parallel requires constructing and solving a convex optimization problem which minimizes the relative entropy

criterion distance, as it appears in (3), subject to the constraints found in (3) and (9), simultaneously (Censor

and Zenios, 1998). To solve this optimization problem simply requires substituting the combined constraints

and target margins into the Lagrangian that is used to construct the dual problem found in (2).

The scenarios we examine vary the sample size n ∈ {1000, 2000}, the generative process that determines

the treatment assignment, the outcome process, and the sampling process. For every i = 1, 2, . . . , n, the

covariates Xi ≡ (Xi1, Xi2, Xi3, Xi4)T are distributed as Xi1, Xi2, Xi3, Xi4 ∼ N (0, 1). We also construct the

transformed variables Ui1 = exp(Xi1+Xi4), Ui2 = (Xi1+Xi2)3, Ui3 = (Xi2+Xi3)2 and Ui4 = log(|Xi3Xi4|).

Each entry in the vector Ui ≡ (Ui1, Ui2, Ui3, Ui4)T is standardized to have a mean of zero and marginal

variances of one - same as for Xi.

The sample indicators are generated assuming Si ∼ B(ρ
(r)
i ), r ∈ {a, b} where

logit
[
ρ
(a)
i

]
= −0.5Xi1 −Xi2 − 0.5Xi3 +Xi4 and

logit
[
ρ
(b)
i

]
= −0.5Ui1 − Ui2 − 0.5Ui3 + Ui4.
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The treatment assignments are generated by sampling from Zi ∼ B
(
π
(k)
i

)
, k ∈ {a, b}, where

π
(a)
i = Siexpit

(
XT
i δ
)

+ (1− Si)expit
(
XT
i λ
)

and

π
(b)
i = Siexpit

(
UT
i δ
)

+ (1− Si)expit
(
UT
i λ
)
.

(10)

The coefficients in (10) are δ ≡ (−1,−0.5, 0, 0.5)T and λ ≡ (0, 1,−0.5, 0.5)T . We generate potential outcomes

from the bivariate model Yi(0)

Yi(1)

 ∼ N
µ(`)

i

κ
(`)
i

 ,
σ2 0

0 σ2

 ,

where ` ∈ {a, b} indexes

µ
(a)
i = 5−Xi1 + 3Xi2 − 3Xi3 +Xi4,

κ
(a)
i = 5− 3Xi1 −Xi2 +Xi3 + 3Xi4,

µ
(b)
i = 5− Ui1 + 3Ui2 − 3Ui3 + Ui4, and

κ
(b)
i = 5− 3Ui1 − Ui2 + Ui3 + 3Ui4,

(11)

The observed outcome corresponds with the potential outcome of the observed treatment assignment. The

counterfactual argument is discarded. In the transportability examples, we also discard both Yi and Zi for

all {i : Si = 0}. The variance of the potential outcomes is set to σ2 = 4. Each of the methods we consider

are provided the design matrix with an intercept term and the four original covariate values - Xi1, Xi2, Xi3,

and Xi4 for all i = 1, 2, . . . , n. The causal effects are estimated using the respective estimators described in

Sections 3 and 4 - τ̂TMLE, τ̂AUG or τ̂CAL. For TMLE and the augmented estimator, the component models of

π̂1(Xi) and ρ̂(Xi) are fit with logistic regression while µ̂0(Xi) and µ̂1(Xi) are fit with least squares regression.

Between the outcome scenarios, the treatment assignment scenarios, the sampling scenarios, and the sample

size, there are a total of 16 experimental scenarios.

5.2 Simulation Results

We report empirical averages and Monte Carlo standard errors for each of the scenarios described in Section

5.1 using the estimators described in Sections 3 and 4, plus the two extensions for data-fusion that were

discussed briefly. The results of the experiment are summarized in Table 1. For a graphical interpretation,

Figure 1 contains a further subset of the results that make up the contents of Table 1 focusing on the set

of scenarios where at least one of the models is misspecified and at least one model is correctly specified.

We also report the coverage probabilities for the full calibration estimators in both the transportability and

data-fusion settings in Table 2. The 95% confidence interval is estimated using a robust variance estimator

which we derive in the Appendix.

Observe that when there is the opportunity to combine datasets and solve the data-fusion problem, we

get more precise estimates of the target population average treatment effect among the unbiased scenarios.

Overall, the results of the full calibration and augmented approaches were less prone to error than the
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TMLE results in each of the scenarios tested. The difference in efficiency between the augmented and full

calibration approaches appears to be negligible, although the augmented approach had a noticeably smaller

Monte Carlo standard error in the transportability setting across every scenario. TMLE, on the other hand,

had the largest Monte Carlo standard errors. We found the results of the augmented approach interesting as

we had hypothesized from the outset that adding additional parametric assumptions should have resulted in

increased efficiency. One advantage to the parametric models we apply is the easy derivation of a variance

estimator (Appendix A). The coverage probabilities of the confidence interval estimates for the full calibration

approach are shown in Table 2. Note that given the setup to the simulation, the transportability cases have

an effective sample size of around n1 ≈ 500 for n = 1000 and n1 ≈ 1000 when n = 2000.

Observe that in the scenarios where the outcome model is correctly specified, the estimated population

average treatment effects are consistent. For the scenarios where both the outcome model and either the

treatment or sampling model is misspecified, we get biased results. When the outcome is misspecified and

the treatment and sampling models are correctly-specified, the full calibration approach produces the least

amount of bias, both in the transportability and data-fusion cases. This is due to the conditions of the

simulation experiment which violate the propensity score exchangeability assumption. This specific scenario

clearly illustrates the shortcomings of the augmented and TMLE approaches when this assumption does not

hold. With so much uncertainty arising from model misspecification, we advocate for using doubly-robust

methods to increase the chances of better ensuring consistent estimation of the causal effects. Doubly-robust

methods present two opportunities for the researcher to correctly model the causal effect whereas with G-

computation and with inverse probability of treatment/sampling approaches, either the outcome model or

the sampling and treatment models must be correctly specified, respectively.

6 Illustrating Examples

6.1 Evaluating Metformin Versus Sulfonylureas as Monotherapy for VA Dia-

betes Patients

As we discussed in Section 1.1, the aim of the applied problem is to estimate the risk difference in mortality

between sulfonylurea and metformin monotherapy for the 2010-2014 cohort of diabetic VA patients. We

use improved covariate balance propensity score (iCBPS) weights (Fan et al., 2016; Josey et al., 2020b) to

estimate the risk difference using only the 2010-2014 cohort, which balance the covariates found in Table

3. As we mentioned earlier, this estimate will serve as a benchmark for the transport and data-fusion

settings. We also estimate the risk difference for the 2004-2009 cohort without the 2010-2014 data, again

for comparative purposes. We use (6)-(8) to find estimates of total mortality in the 2004-2009 sample

transported to the 2010-2014 cohort. We also examine the setting which combines the 2004-2009 sample

with the 2010-2014 sample to estimate the risk difference among patients in the 2010-2014 cohort using the

extensions to (6)-(8) to accommodate the data-fusion setting. Since sulfonylurea use in 2004-2009 represents
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27.0% of monotherapy recipients but only 11.8% of patients in 2010-2014 implies we will need methods which

account for violations of propensity score exchangeability.

Both cohorts excluded patients with pre-existing forms of cancer. We also omitted patients that received

a second-line medication (either insulin, a thiazolidinedione, a sulfonylurea for patients receiving metformin,

or metformin for patients receiving a sulfonylurea) within 30 days of their first filled prescription of either

metformin or a sulfonylurea. Time to mortality, which is used to create the indicators of the three mortality

outcomes, is computed as the number of days to death from the date when the first prescription is filled. Our

analysis assumes intention to treat with the first prescribed therapy. We do not censor patients at the time

when a second-line medication is prescribed, as was done in Wheeler et al. (2013). The remaining baseline,

demographic, laboratory measurements, and comorbidities about the two cohorts are summarized in Table

3.

Table 4 contains the various risk-difference estimates that we computed on the illustrative dataset. We

will primarily focus on the estimates of five-year mortality since these figures have the greatest magnitude.

Furthermore, the trends that we will report about five-year mortality appear to be the same for one- and

two-year mortality. Observe that the crude risk difference in five-year mortality is similar within both the

2004-2009 and in the 2010-2014 cohorts. This implies that there is either limited or no changes to the risk

difference attributable to temporal trends in treatment efficacy - i.e. the effectiveness of either therapy has

not changed relative to the other. A temporal effect modifier is one factor that we would not be able to

accommodate without violating Assumption 3. The adjusted marginal estimates of the risk difference using

iCBPS reveal the importance of accounting for differences observed between the study and target cohorts.

The risk difference in the 2004-2009 cohort is 12.2% (11.6%, 12.7%) and 4.1% (3.4%, 4.9%) in the 2010-2014

cohort. Given the limited change of the crude estimates between cohorts, these discrepancies are likely due

to differences in the distribution of effect modifiers between the two temporally-distinct cohorts. When we

transport the estimates of the 2004-2009 cohort onto the 2010-2014 cohort, the risk difference is found to be

4.0% (3.4%, 4.6%). That is, the transported effect estimate is more similar to the iCBPS estimate of 2010-

2014 than of the 2004-2009 cohort. Carrying over from the 2004-2009 calibrated estimate, the transported

estimate from the 2004-2009 cohort onto the 2010-2014 cohort is more efficient than the calibrated estimate

computed with only the data from the 2010-2014 cohort. When we combine the two cohorts, we get an

unbiased estimate of the target population average treatment effect with much greater efficiency than using

only data from 2010-2014 alone. Using this estimator, we found the estimated risk difference for 2010-2014

to be 4.2% (3.7%, 4.7%).

Regardless of the outcome or estimator, our results suggest that sulfonylurea monotherapy remains more

harmful overall than metformin monotherapy for newly diagnosed veterans with diabetes. This is true both

in 2004-2009 and 2010-2014, indicating that a continued phaseout of sulfonylureas may be advisable except

in specific targeted subgroups where it might be more effective. Continued research will be needed to identify

these subgroups, should any exist.
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6.2 Risk of Total Mortality from Insulin Provision Versus Sensitization in a

Veteran Population with Diabetes and CAD

In addition to transporting the risk difference of total mortality among patients receiving sulfonylurea versus

metformin across temporally defined populations within the VA, we also transport estimates from the BARI

2D trial population onto the VA 2010-2014 cohort. This example showcases the fact that our method works

for transporting estimates from trial data onto observational data in addition to between observational

samples as we showed in Section 6. In this example we compare insulin sensitization therapy, which consists

of treatment with metformin and/or a thiazolidinedione (another class of oral diabetes medications), with

insulin provision therapy, which consists of treatment with a sulfonylurea and/or insulin, on the risk of total

mortality three years after randomization.

The BARI 2D study enrolled 2,368 diabetes patients with untreated coronary artery disease (CAD) into

four treatment groups along a 2x2 factorial design. In addition to examining the effects of glycemic control

strategies, the BARI 2D study also tested the effects of delayed versus contemporaneous treatment of CAD.

We will ignore this portion of the study and focus solely on glycemic control. We construct a representative

cohort from the VA electronic health record as the target sample. This sample included all diabetes patients

diagnosed within the calendar years of 2010-2014 with prior history of CAD that received either insulin

provision or insulin sensitization therapy after diagnosis with diabetes mellitus (n = 30,393). We note that

there is some misalignment with the two samples in this example since patients within the BARI 2D study

had a longer duration of diabetes prior to randomization, during which time most patients had some diabetes

treatment prior to randomization. If we were to try and balance this variable between samples, we would

likely violate Assumption 3. Nevertheless we should still be able to estimate informative risk differences after

accounting for the other risk factors attributable to total mortality considered for diabetes patients and after

accounting for the covariates with differences between samples in our model. The factors which we balance

between the two samples and the treatment groups are found in Figure 2. Here we display the standardized

mean differences of the covariates between the treated and controls as well as between the BARI 2D sample

and the sample of 2010-2014 VA diabetes patients with CAD, both before and after adjustment using weights

for transportability and data-fusion. These covariates are measured in both the BARI 2D trial sample and

within the VA cohort.

Similar to the analysis in Section 6, we find the unadjusted and the iCBPS adjusted risk difference

estimates in both the VA and BARI 2D cohorts. We then transport the BARI 2D results to the VA cohort

using the calibration methods discussed in Section 6. We supplement this estimate by finding the risk

difference under the data-fusion setting which combines the responses, treatment, and covariates of the

BARI 2D study with the VA cohort. Both the crude and adjusted results using data only from the BARI

2D study without integrating VA data corroborate what was originally found in the trial analysis - insulin

provision has no effect on total mortality compared to insulin sensitization. After three years and adjusting

using the iCBPS weights, the BARI 2D study saw no change (-2.1%, 2.2%) in total mortality between the
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two treatment groups. However, after weighting the BARI 2D responses to transport the estimated risk

difference onto the VA cohort, we observed a 2.4% (-4.1%, 8.8%) increased risk of death among patients

receiving insulin provision therapy. For the data-fusion result, we estimate an increase risk in total mortality

of 4.2% (2.9%, 5.5%) three years after randomization. This better aligns with the risk difference estimated

using only the VA cohort which found an increased risk difference of 4.2% (3.0%, 5.4%).

7 Discussion

By sequentially estimating the vector of sampling weights followed by the vector of balancing weights, we

show how constrained convex optimization techniques can be applied in joining the covariate balancing

problem described in Chan et al. (2015) with solutions for transporting experimental effect estimates (Sig-

norovitch et al., 2010; Westreich et al., 2017). The resulting estimator eliminates both within-treatment

group heterogeneity as well as any heterogeneity that might occur between study participants and non-

participants attributed to sampling. This allows us to transport estimates found with observational data

across populations. We also examined two alternative approaches for transportability which we adapted

to accommodate data for study and target populations derived from observational studies. Along with the

full calibration method, the augmented estimator can be extended to solve the problem of data-fusion in

an observational context. The TMLE (Rudolph and van der Laan, 2017) and augmented estimators (Dong

et al., 2020) are less constrained by parametric assumptions, but they do not account for the possibility of

the propensity score differing between the target and study samples. One way to avoid this problem might

be to estimate π0(Xi) by conditioning the estimator for π1(Xi) on the estimated inverse odds of sampling

weights - (4) for example. This approach mirrors the process taken by (6), which finds λ̂1 and λ̂0 conditioned

on the sampling weight estimates (4).

In the simulation study conducted in Section 5, we found that using some form of calibration, either with

the augmented approach or the full calibration approach, yielded the most efficient estimates. In cases where

the outcome model is correctly specified, the augmented estimator performed the best of the three methods

we tested. However, we also demonstrate that the augmented estimator requires Assumption 7 to remain

consistent when the outcome model is misspecified but the treatment assignment and sampling models

are correctly specified. As we have mentioned frequently, the propensity score exchangeability assumption

is critical within the data-fusion setting. In addition to the simulation study, we show in an illustrative

example of US veterans with diabetes how different populations produce different effect estimates for the

same outcome. We then demonstrate how eliminating the sampling bias induced by differences in the

distribution of the effect modifiers between cohorts produces consistent estimates of the treatment effect on

the target population.

One of the major shortcomings of the full calibration method is the set of linearity conditions nested

within Assumptions 5-7. These assumptions are necessary to guarantee the double-robustness property
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as shown in the Appendix. The TMLE approach does not require any assumption about the functional

form of ρ(Xi) or π0(Xi) while the augmented approach only requires Assumption 6 to hold to guarantee

double-robustness. If the outcome model is not misspecified, then neither the augmented estimator nor

TMLE require any assumptions about the form of µ0(Xi) and µ1(Xi). We note that the more stringent

linearity assumptions culminate in a tradeoff between more flexible modeling strategies and the requirement

of Assumption 8. One solution to relax the linearity conditions in the full calibration approach might be to

use sieve regression methods (Geman and Hwang, 1982) that replace the balance functions in (2), (4), (6),

and (7) with polynomial expansions and interactions of the covariates. This nonparametric approach was

explored in Chan et al. (2015) for estimating balancing weights to mitigate treatment group heterogeneity

and briefly for generalizability in Dong et al. (2020).

We stated that the complete individual-level covariate data were required for both samples A and B. It

would be advantageous to only require the marginal moment values of the covariate distribution in sample

B for transporting observational study results as these entries are often found in the scientific and medical

literature in a so-called Table 1. This setting is discussed in more detail by Josey et al. (2020a) under the set-

ting of transporting randomized clinical trial results. In that article we point out that any resulting inference

in such a setting would involve the target sample average treatment effect, τ ′0 ≡ n−10

∑
{i:Si=0} Yi(1)−Yi(0),

instead of the target population average treatment effect τ0. There is nothing to indicate the same argument

would not be true for transporting observational study results.
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A Inference using Calibration Weights for Transportability

Consider the transportability case. We begin by defining the estimating equations for the parameters in-

troduced in Sections 3 and 4. Let c(Xi) ≡ [c1(Xi), c2(Xi), . . . , cm(Xi)]
T . First, we define ω(Si,Xi;θ) ≡
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(1 − Si) [c(Xi)− θ], which is solved by
∑n
i=1 ω(Si,Xi; θ̂)] = 0m where θ̂ = 1

n0

∑
i=1n(1 − Si)c(Xi). Next,

define

ζ(Si,Xi;γ,θ) ≡ Si exp

− m∑
j=1

cj(Xi)γj

 [c(X)− θ] ,

which is used to solve for
∑n
i=1 ζ(Si,Xi; γ̂, θ̂) = 0m as a result of the Lagrangian multiplier theorem discussed

in Section 3. The score equations for λ0 and λ1 are identified as

ξ0(Si,Xi, Zi;γ,λ0,θ) = Si(1− Zi) exp

− m∑
j=1

cj(Xi)(γj + λj0)

 [c(X)− θ]

ξ1(Si,Xi, Zi;γ,λ1,θ) = SiZi exp

− m∑
j=1

cj(Xi)(γj + λj1)

 [c(X)− θ]

which can be used to solve for
∑n
i=1 ξ0(Si,Xi, Zi; γ̂, λ̂0, θ̂) = 0m and

∑n
i=1 ξ1(Si,Xi, Zi; γ̂, λ̂1, θ̂) = 0m.

Finally, we can write the score equation for τ0 as

φ(Si,Xi, Yi, Zi;γ,λ0,λ1, τ) = SiZip(Xi) [Yi(1)− τ ]− Si(1− Zi)p(Xi)Yi(0) (12)

which we may solve as
∑n
i=1 φ(Si,Xi, YiZi; γ̂, λ̂0, λ̂1, τ̂CAL) = 0. Given this setup, we can see that these

equations are conducive of M-estimation theory. For simplicity, we will often drop the parameter values in

the notation when using the functional representations of the estimating equations.

To show double-robustness, we first prove that τ̂CAL is consistent for τ0 given Assumption 5. This means

we can assume

µ∗0(Xi) =

m∑
j=1

cj(Xi)α
∗
j and

µ∗1(Xi) =

m∑
j=1

cj(Xi)β
∗
j .

Let p̂(Xi) be determined by (7) where λ̂1 and λ̂0 are solved using the objectives in (6). If we assume

c1(Xi) = 1 for all i = {i : Si = 1}, then n1 =
∑
{i:Si=1} p̂(Xi)Zi. If we substitute p̂(Xi) for p(Xi) into (12),

regardless of whether it is a correctly specified model for the balancing and sampling weights, to find the

expectation

1

n1
E

[
n∑
i=1

φ(Si,Xi, Yi, Zi)

]
=

1

n1
E

{
n∑
i=1

E [SiZip̂(Xi)Yi(1)− Si(1− Zi)p̂(Xi)Yi(0)|Si,Xi, Zi]

}
− τ0

=
1

n1
E

 n∑
i=1

SiZip̂(Xi)

m∑
j=1

cj(Xi)β
∗
j −

n∑
i=1

Si(1− Zi)p̂(Xi)

m∑
j=1

cj(Xi)α
∗
j

− τ0
= E

 m∑
j=1

θ̂jβ
∗
j −

m∑
j=1

θ̂jα
∗
j

− τ0
= 0

24



Now suppose Assumptions 6 and 7 are given. This means

log[π∗(Si,Xi)] = Si

m∑
j=1

cj(Xi)δ
∗
j1 + (1− Si)

m∑
j=1

cj(Xi)λ
∗
j1,

log[1− π∗(Si,Xi)] = Si

m∑
j=1

cj(Xi)δ
∗
j0 + (1− Si)

m∑
j=1

cj(Xi)λ
∗
j0, and

logit[ρ∗(Xi)] =

m∑
j=1

cj(Xi)γ
∗
j .

It is trivial to see that E[ω(Si,Xi;θ
∗)] = 0m, where θ∗ = E[c(Xi)|Si = 0]. The expectation of the estimating

equation for γ can be expanded to reveal

E
[
ζ(Si,Xi; θ

∗
j ,γ
∗, θ∗j )

]
= E

E

Si exp

− m∑
j=1

cj(Xi)γj

 [c(Xi)− θ∗]

∣∣∣∣∣∣Xi




= E

 exp
[
−
∑m
j=1 cj(Xi)γj

]
1 + exp

[
−
∑m
j=1 cj(Xi)γ∗j

] [c(Xi)− θ∗]

 ,

which can only evaluate to zero if

exp
[
−
∑m
j=1 cj(Xi)γj

]
1 + exp

[
−
∑m
j=1 cj(Xi)γ∗j

] ∝ Pr{Si = 0|Xi}.

Therefore E [ζ(Si,Xi;γ,θ
∗)] ∝ E [c(Xi)− θ∗|Si = 0] = 0m. This result helps simplify solving the expecta-

tions of the estimating equations for λ0 and λ1, leading us to find

E
[
ξ1(Si,Xi, Zi; θ

∗
j ,γ
∗,λ1)

]
= E

E

SiZi exp

− m∑
j=1

cj(Xi)(γj + λj1)

 [c(Xi)− θ∗]

∣∣∣∣∣∣Xi, Zi


∝ E

E

Zi exp

− m∑
j=1

cj(Xi)λj1

 [c(Xi)− θ∗]

∣∣∣∣∣∣Si = 0,Xi


= E

exp
[
−
∑m
j=1 cj(Xi)λj1

]
exp

[
−
∑m
j=1 cj(Xi)λ∗j1

] [c(Xi)− θ∗]

∣∣∣∣∣∣Si = 0

 .

(13)

As with taking the expectation of ζ, the only way for (13) to evaluate to zero is if λj1 = λ∗j1 for all

j = 1, 2, . . . ,m. A similar result can be shown for ξ0 where λj0 = λ∗j0 in order for

E
[
ξ0(Si,Xi, Zi; θ

∗
j ,γ
∗,λ∗0)

]
= 0.

Combining these results, we can then conclude

E [φ(Si,Xi, Yi, Zi;γ
∗,λ∗0,λ

∗
1, τ0)] = 0.

If we concatenate the parameter values into η = (θT ,γT ,λT0 ,λ
T
1 , τ) and stacking the estimating equations

with

ψ(Si,Xi, Yi, Zi;η) ≡ [ω(Si,Xi)
T , ζ(Si,Xi)

T , ξ0(Si,Xi, Zi)
T , ξ1(Si,Xi, Zi)

T , φ(Si,Xi, Yi, Zi)]
T ,
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then given the properties of m-estimators under mild regularity conditions (Tsiatis, 2006), we can generate

the influence function that finds

η̂ − η∗ = −E

[
∂ψ(Si,Xi, Yi, Zi;η

∗)

∂η

]−1 [
1

n

n∑
i=1

ψ(Si,Xi, Yi, Zi;η
∗)

]
+ op(n

−1/2). (14)

Equation (14) is known as the influence function for η and implies E (η̂ − η∗) = 04m+1. By applying the

weak law of large numbers, we conclude η̂ →p η
∗ implying τ̂CAL →p τ0.

Another result of M-estimation theory shows that under the weak law of large numbers,

n−1/2(η̂ − η∗)→d N (04m+1,Σ
∗)

where

Σ∗ = E

[
∂ψ(Si,Xi, Yi, Zi;η

∗)

∂η

]−1
E
[
ψ(Si,Xi, Yi, Zi;η

∗)
⊗

2
]

E

[
∂ψ(Si,Xi, Yi, Zi;η

∗)

∂η

]−T
.

Therefore, the robust variance estimator we use is

Σ̂ =
1

n

[
n∑
i=1

∂ψ(Si,Xi, Yi, Zi; η̂)

∂η

]−1 [ n∑
i=1

ψ(Si,Xi, Yi, Zi; η̂)
⊗

2

][
n∑
i=1

∂ψ(Si,Xi, Yi, Zi; η̂)

∂η

]−T
.

B Estimating Equations for Data-Fusion

Data-fusion requires slight modifications to some of the estimating equations in A. The score equations for

λ0 and λ1 are instead

ξ0(Si,Xi, Zi;γ,λ0,θ) ≡ Si(1− Zi) exp

− m∑
j=1

cj(Xi)(γj + λj0)

 [c(Xi)− θ]

+ (1− Si)(1− Zi) exp

− m∑
j=1

cj(Xi)λj0

 [c(Xi)− θ]

ξ1(Si,Xi, Zi;γ,λ1,θ) ≡ SiZiq exp

− m∑
j=1

cj(Xi)(γj + λj1

 [c(Xi)− θ]

+ (1− Si)Zi exp

− m∑
j=1

cj(Xi)λj1

 [c(Xi)− θ] .
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Following a similar theme, we also rewrite the score equation for τ0 as

φ(Xi, Yi, Zi;γ,λ0,λ1, τ) ≡ Si

{
Zi exp

− m∑
j=1

cj(Xi)(γj + λj1)

 [Yi(1)− τ ]

− (1− Zi) exp

− m∑
j=1

cj(Xi)(γj + λj0)

Yi(0)

}

+ (1− Si)

{
Zi exp

− m∑
j=1

cj(Xi)λj1

 [Yi(1)− τ ]

− (1− Zi) exp

− m∑
j=1

cj(Xi)λj0

Yi(0)

}
.

The proof is the same as in Appendix A using these updated equations.
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Tables and Figures

Transportability Data-Fusion

n
Outcome

Scenario

Treatment

Scenario

Sampling

Scenario
τ0 TMLE AUG CAL AUG CAL

1000 a a a 3.28 3.28 (3.75) 3.28 (0.42) 3.29 (0.53) 3.28 (0.34) 3.28 (0.33)

1000 a a b 4.06 4.06 (0.41) 4.06 (0.35) 4.06 (0.37) 4.06 (0.31) 4.06 (0.31)

1000 a b a 3.26 3.26 (0.58) 3.26 (0.4) 3.27 (0.48) 3.26 (0.33) 3.26 (0.33)

1000 a b b 4.08 4.07 (0.35) 4.07 (0.34) 4.07 (0.35) 4.07 (0.31) 4.07 (0.31)

1000 b a a 4.08 10.04 (9.74) 2.28 (0.71) 4.13 (0.91) 3.68 (0.42) 4.04 (0.35)

1000 b a b 3.36 4.88 (0.58) 4.55 (0.38) 4.70 (0.41) 3.84 (0.27) 3.57 (0.31)

1000 b b a 4.09 5.87 (1.31) 3.60 (0.67) 4.95 (0.76) 4.87 (0.38) 4.94 (0.33)

1000 b b b 3.36 5.18 (0.36) 5.14 (0.34) 5.20 (0.34) 4.68 (0.27) 4.63 (0.29)

2000 a a a 3.27 3.24 (1.39) 3.28 (0.30) 3.27 (0.38) 3.28 (0.25) 3.27 (0.24)

2000 a a b 4.06 4.06 (0.29) 4.06 (0.25) 4.06 (0.26) 4.06 (0.22) 4.06 (0.23)

2000 a b a 3.28 3.28 (0.41) 3.27 (0.29) 3.28 (0.37) 3.28 (0.24) 3.28 (0.23)

2000 a b b 4.07 4.08 (0.25) 4.08 (0.24) 4.08 (0.24) 4.07 (0.21) 4.07 (0.22)

2000 b a a 4.10 8.47 (9.23) 2.25 (0.50) 4.12 (0.64) 3.68 (0.32) 4.05 (0.26)

2000 b a b 3.38 4.83 (0.40) 4.54 (0.28) 4.68 (0.30) 3.84 (0.21) 3.57 (0.22)

2000 b b a 4.09 5.61 (0.88) 3.55 (0.44) 4.91 (0.56) 4.83 (0.27) 4.91 (0.24)

2000 b b b 3.38 5.20 (0.26) 5.17 (0.24) 5.22 (0.25) 4.71 (0.20) 4.65 (0.21)

Table 1: Average estimate and Monte Carlo standard error under the different simulation scenarios of the

treatment assignment and outcome processes. The target population average treatment effect is evaluated

under either the transportability or the data-fusion settings.
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n
Outcome

Scenario

Treatment

Scenario

Sampling

Scenario
τ0 Transportability Data-Fusion

1000 a a a 3.28 0.901 0.944

1000 a a b 4.06 0.940 0.953

1000 a b a 3.26 0.922 0.941

1000 a b b 4.08 0.943 0.948

1000 b a a 4.08 0.848 0.964

1000 b a b 3.36 0.095 0.955

1000 b b a 4.09 0.631 0.290

1000 b b b 3.36 0.002 0.028

2000 a a a 3.27 0.922 0.954

2000 a a b 4.06 0.933 0.931

2000 a b a 3.28 0.911 0.939

2000 a b b 4.07 0.944 0.946

2000 b a a 4.10 0.883 0.952

2000 b a b 3.38 0.017 0.928

2000 b b a 4.09 0.525 0.099

2000 b b b 3.38 0.000 0.000

Table 2: Coverage probabilities of the target population average treatment effect for the full calibration

approaches described in Section 4.
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Metformin

(2004-2009)

Metformin

(2010-2014)

Sulfonylurea

(2004-2009)

Sulfonylurea

(2010-2014)

Patient Count 84003 100612 29447 11736

Baseline Age 61.90 (11.64) 60.45 (11.50) 67.32 (12.47) 66.95 (12.72)

Male 80964 (96.4) 95906 (95.3) 28912 (98.2) 11472 (97.8)

Race/Ethnicity

Non-hispanic White 11927 (14.2) 20132 (20.0) 4038 (13.7) 2253 (19.2)

Non-hispanic Black 4730 (5.6) 6810 (6.8) 1517 (5.2) 614 (5.2)

Hispanic 10897 (13.0) 8583 (8.5) 5073 (17.2) 1123 (9.6)

Other 56449 (67.2) 65087 (64.7) 18819 (63.9) 7746 (66.0)

Smoking Status

Current 21475 (25.6) 30603 (30.4) 6365 (21.6) 2925 (24.9)

Former 42751 (50.9) 44354 (44.1) 16396 (55.7) 5935 (50.6)

Never 19777 (23.5) 25655 (25.5) 6686 (22.7) 2876 (24.5)

BMI 32.96 (6.43) 33.66 (6.52) 31.20 (6.00) 32.08 (6.22)

SBP 133.03 (16.61) 132.35 (15.93) 133.83 (18.37) 131.80 (17.31)

DBP 76.83 (10.82) 78.69 (10.76) 74.90 (11.59) 75.81 (11.45)

HDL 39.19 (10.76) 40.14 (10.97) 39.23 (11.51) 39.60 (11.50)

LDL 103.43 (34.93) 102.68 (35.30) 101.32 (35.46) 96.99 (35.06)

Total Cholesterol 179.60 (44.15) 178.57 (44.51) 177.91 (46.41) 173.49 (46.68)

Triglycerides 205.36 (192.15) 203.67 (198.23) 206.01 (198.88) 208.68 (216.49)

Fasting Plasma Glucose 151.54 (62.26) 149.71 (63.64) 165.87 (80.76) 163.67 (78.23)

HbA1c 7.17 (1.43) 7.28 (1.41) 7.42 (1.63) 7.54 (1.54)

Estimated GFR 78.41 (18.59) 83.88 (20.08) 66.83 (22.97) 66.15 (24.76)

Creatinine 1.03 (0.20) 0.98 (0.20) 1.25 (0.48) 1.29 (0.56)

History of CAD 31211 (37.2) 25771 (25.6) 14071 (47.8) 4535 (38.6)

History of CHF 8768 (10.4) 6086 (6.0) 5916 (20.1) 1752 (14.9)

History of Stroke 10572 (12.6) 8385 (8.3) 5230 (17.8) 1645 (14.0)

History of Kidney Disease 571 (0.7) 237 (0.2) 1214 (4.1) 316 (2.7)

History of Liver Disease 424 (0.5) 349 (0.3) 278 (0.9) 86 (0.7)

Table 3: Summary statistics for covariates measured on newly diagnosed diabetic patients receiving care in

the VA healthcare system stratified by years (2004-2009 and 2010-2014) and monotherapy type (Metformin

or Sulfonylurea).

Method and Sample One Year after Rx Two Years after Rx Five Years after Rx

Unadjusted 2004-2009 2.6% (2.3%, 2.8%) 5.3% (4.9%,5.7%) 12.6% (11.9%, 13.2%)

Unadjusted 2010-2014 2.4% (2.0%, 2.7%) 5.1% (4.6%, 5.7%) 12.5% (11.7%, 13.4%)

iCBPS 2004-2009 2.3% (2.1%, 2.6%) 5.0% (4.7%, 5.4%) 12.2% (11.6%, 12.7%)

iCBPS 2010-2014 1.0% (0.7%, 1.4%) 2.0% (1.5%, 2.5%) 4.1% (3.4%, 4.9%)

Transported 2004-2009 0.8% (0.5%, 1.1%) 1.9% (1.4%, 2.3%) 4.0% (3.4%, 4.6%)

Data-Fusion 0.9% (0.7%, 1.1%) 2.1% (1.7%, 2.4%) 4.2% (3.7%, 4.7%)

Table 4: Risk differences in total mortality between sulonylurea and metformin monotherapy in a VA cohort

starting from the date of first prescription (Rx) using a variety of causal effect estimators.
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Figure 1: A subset of the constant conditional ATE estimates using four different methods for estimating

balancing weights. Each boxplot is composed of 1000 estimates from the replicates that generate the values

in Table 1. The suffixes -T denotes the transportability case, while -F denotes the data-fusion case.
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Figure 2: The standardized absolute mean differences between samples (BARI 2D versus 2010-2014 new

VA diabetes patients) and treatment groups (insulin sensitization versus insulin provision) using weighting

methods discussed in Section 4. The standardized mean differences between treatment groups are estimated

over the patients i ∈ {Si = 1} with the Unadjusted and Transport Weights but for all i = 1, 2, . . . , n with

the Fusion Weights. The entire dataset is used to find the differences between samples for all three methods.
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