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Methods for control of confounding and measurement error are
central to non-experimental research. One large class of such
methods based on instrumental variables (IV) dates back to the
1920s. They have been an integral part of econometrics for
decades1,2 and have appeared in the health sciences,3–5 yet
they remain little known in epidemiology. Their absence from
the field may in part be due to the fact that the methods were
rarely presented outside of linear-regression contexts until the
1980s. The past two decades have seen extensions of IV
methods to non-parametric causal models and to non-linear
regression.4–16 I here provide an elementary introduction to
non-parametric IV methods, with a focus on showing how IV
assumptions lead to corrections for confounding by non-
compliance in randomized trials. This application is especially
important because treatment assignment can provide a perfect
instrumental variable for confounding control, and IV methods
provide an alternative to intent-to-treat analysis. I will also
briefly sketch how IV methods for misclassification correction
are related to confounding control.

An intuitive basis for the methods discussed here is as follows:
Suppose X and Y are the exposure and outcome of interest, and
we can observe their relation to a third variable Z, called an
instrumental variable or instrument, that is associated with X but
not associated with Y except through its association with X.
Then, under certain conditions, we can write the Z-Y
association as a product of the Z-X and X-Y associations,

AssocZY = AssocZXAssocXY

and solve this equation for the X-Y association. This equation is
of particular use when either (i) the observed X-Y association is

confounded by unmeasured covariates, but the Z-X and Z-Y
associations are not confounded; or (ii) the X-Y association
cannot be observed directly because we cannot observe X
directly, but Z is an observed surrogate for X whose association
with X is known or estimable, and whose deviation from X is
independent of other variables or errors. The precise conditions
under which the equation holds vary with the problem, as will
be discussed below.

Instrumental variables for 
confounding control
Let U be the set of all variables that affect X and Y, and suppose
Z has the following properties:

1) Z is independent of U;
2) Z is associated with X;
3) Z is independent of Y given X and U.

Note that assumption 3 implies that Z has no direct effect on Y.
Figure 1 gives a causal diagram17 that satisfies these assump-
tions, with labels from the example below.

The variables in U may be partly or entirely unmeasured or
even unimagined. It might then appear that there is no way to
estimate the effect of X on Y in an unconfounded manner. A
fundamental insight of IV estimation is that the instrument Z
provides a means to estimate bounds on the X effect;6,7,10 with
further assumptions, the upper and lower bounds may be
narrowed or even equal, in which case IV methods provide a
point estimate.8 This estimate is perhaps most easily understood
in the following special case, which is based on a now standard
counterfactual (potential-outcomes) model for treatment effects
in the presence of non-compliance.8,18,19
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Intrumental variable methods for 
non-compliance

A paradigmatic example in which the IV conditions 1–3 are
often satisfied is in a randomized trial with non-compliance: Z
becomes treatment assignment, which is randomized and so
fulfills assumption 1; X becomes treatment received, which is
affected but not fully determined by assignment Z. To illustrate
these concepts, Table 1 presents individual one-year mortality
data from a cluster-randomized trial of vitamin A supplementa-
tion in childhood.18,20 Of 450 villages, 229 were assigned to a
treatment in which village children received two oral doses of
vitamin A; children in the 221 control villages were assigned
none. This protocol resulted in 12 094 children assigned to the
treatment (Z = 1) and 11 588 assigned to the control (Z = 0).
Only children assigned to treatment received the treatment;
that is, no one had Z = 0 and X = 1. Unfortunately, 2419 (20%)
of those assigned to the treatment did not receive the treatment
(had Z = 1 and X = 0), resulting in only 9675 receiving treat-
ment (X = 1). Nonetheless, assumption 1 is satisfied if the ran-
domization was not subverted, while assumption 2 is supported
by the data: Assignment to vitamin A increased the percentage
receiving A from 0 to 80%.

Assumption 3 is plausible biologically, but must be reconciled
with the fact that, among those both assigned to no vitamin A
(Z = 0) and receiving no vitamin A (X = 0), mortality is only 639
per 100 000, versus 1406 per 100 000 for those assigned to
vitamin A (Z = 1) but receiving no vitamin A (X = 0). Assuming
that this difference is due to confounding by factors U that affect
compliance (and hence X) and mortality (Figure 1), this illusory
direct effect of assignment Z exemplifies the type of bias that
arises when one attempts to estimate direct effects by stratifying

on intermediates21 (X is intermediate between Z and Y). There
are many plausible explanations for such confounding. For
example, perhaps families that fail to comply tend to be the
poorest and so provide high-risk environments (poorer
nutrition and sanitation); their low compliance would leave
behind a low-risk group of compliers in the X = Z = 1 category,
and thus confound an unadjusted comparison of the treated
group (X = 1) with the untreated group (X = 0).

Confounding is a threat whenever people fail to comply with
their assignment (i.e. have X ≠ Z) for reasons (U) related to their
outcome;4–10,18,19,22,23 this problem is often referred to as one
of biased selection for treatment. For example, patients assigned
to a complex pill regimen may become lax in following that
regimen. These non-compliers are often those who feel less ill
and who have a better prognosis with respect to the outcome Y.
In such situations, there will be confounding in a comparison of
those complying with treatment to the other patients, because
those complying are sicker than the others (i.e. there is self-
selection for treatment that is related to prognosis).

Concerns of this sort have led to recommendations (often
rigid) that intent-to-treat analysis be followed. To test and esti-
mate effects, intent-to-treat compares those assigned to one
treatment against those assigned to another treatment without
regard to actual treatment received (X). Critics of this approach
point out that treatment received is the source of biological
efficacy, and that comparison of treatment assigned is biased
for the effect of treatment received (furthermore, the bias is
not always toward the null,24 contrary to common lore). By
recognizing treatment assignment as an instrument, IV methods
provide an alternative to the biased extremes of analysing Z as
the treatment (intent-to-treat) and analysing received treat-
ment X in the conventional manner (which is likely to be con-
founded by determinants of compliance).

To see how the IV concept can be used to control for
confounding due to non-compliance, let us refer to people who
would always obey their treatment assignment as co-operative;
among these people, X and Z are always equal. It is crucial to
distinguish the concept of co-operative people from the concept
of compliance. Co-operative people are those who will receive
their assigned regimen, no matter which regimen (treatment) they
are assigned. In the example, co-operative children have parents
or guardians who will fully co-operate with the researchers, in
that they will allow the researchers to give their child the
vitamin if assigned to receive it, and will not give their child
the vitamin if assigned to not receive it. Non-co-operative
people are those who will not receive certain regimens if
assigned to them. In the example, some parents may refuse to
let their child receive the experimental treatment. These
refusers have children who exhibit non-compliance if they are
assigned to the vitamin A, but who exhibit compliance if they

Figure 1

Table 1 One-year mortality data from cluster-randomized trial of vitamin A supplementation in children.20 Z = 1 if assigned A, 0 if not; X = 1 if
received A, 0 if not

Z = 1 Z = 0

X = 1 X = 0 Total X = 1 X = 0

Deaths (Y = 1) 12 34 46 0 74

Total 9675 2419 12 094 0 11 588

Riska 124 1406 380 undefined 639

a Deaths per 100 000 within one year.
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are assigned to no vitamin. Thus, some non-co-operative people
will be in compliance with their assignment, simply because
they were not assigned to a treatment they would have refused.

Following earlier derivations of the correction below,8,19 I
will introduce this simplifying assumption:

4) Treatment assignment affects X only among co-operative
people.

This assumption says that the participants may be divided into
two groups: co-operative, for whom X always equals Z; and
non-co-operative, for whom assignment Z has no effect on X. If
the treatment variable has only two levels (1 and 0),
assumption 4 reduces to an assumption that no trial participant
would always (perversely) receive the opposite of what she was
assigned, no matter which treatment she was assigned,8 so that
there are only two types of non-co-operators: Those who would
always receive treatment and those who would never receive
treatment. Table 1 provides evidence that assumption 4 is
satisfied in the example: If there were participants who would
always receive the opposite of their assignment ( ‘defiers’8), we
should expect to see some of them in the Z = 0, X = 1 column,
but no one is seen there.

Now define

pc = proportion of trial participants who are co-operative.

pc is the effect that assignment to treatment 1 rather than 0
would have on the average value of the treatment indicator X.
To see this, define

p1 = proportion of participants who would receive treat-
ment 1 (X = 1) if assigned treatment 1 (Z = 1)

= average of X if everyone were assigned treatment 1
p0 = proportion of participants who would receive treat-

ment 1 (X = 1) if assigned treatment 0 (Z = 0)
= average of X if no one were assigned treatment 1.

Any difference between p1 and p0 has to be due to the change
in X among co-operative people (because, by assumption 4,
only the co-operative people are affected by Z). More precisely,
p1 – p0 must equal pc because only co-operative people 
would go from X = 0 to X = 1 in response to a change from 
Z = 0 to Z = 1. Also, p0 must equal the proportion of non-
co-operators who always receive treatment, 1–p1 must equal
the proportion of non-co-operators who never receive
treatment, and pc + p0 + 1 – p1 = 1.

Under assumption 1, p1 – p0 and hence pc is validly estimated
by the observed difference in the proportion receiving treat-
ment 1 (X = 1) for the group assigned treatment 1 (Z = 1) versus
the group assigned treatment 0 (Z = 0). In the example, this
estimate is the difference in the proportions receiving vitamin A
among those assigned and not assigned to A:

Next, define

m•1 = average outcome (Ȳ) if everyone is assigned treatment 1 
(Z = 1)

m•0 = average outcome if everyone is assigned treatment 0 
(Z = 0).

The average outcome difference m•1 – m•0 is the effect that
assignment to treatment 1 rather than 0 would have on the aver-
age outcome. (Recall that, when Y is a binary (0,1) disease indi-
cator, the average outcome is the average risk or incidence
proportion, and the average outcome difference is the average
risk difference.25) Under assumption 1, this difference is validly
estimated by the observed difference in average outcome for the
group assigned treatment 1 versus the group assigned treatment
0 (which is the intent-to-treat [ITT] estimate of treatment effect):

m•1 = 46/12 095 = 380 per 100 000
m•0 = 74/11 588 = 639 per 100 000. 

Next, consider two quantities that we do not observe directly:

m1c = average outcome of co-operative people if everyone is
assigned treatment 1,

m0c = average outcome of co-operative people if everyone is
assigned treatment 0.

m1c – m0c is the effect that assignment to treatment 1 rather
than 0 would have on the average outcome of co-operative people.
In addition, because assignment Z and treatment received X are
identical among co-operative people, m1c – m0c is the effect that
receiving treatment 1 rather than 0 would have on the average
outcome among co-operative people. In other words, m1c – m0c
is both an intent-to-treat (Z) effect and a biological (X) effect on
co-operative people.

Finally, consider two quantities that are estimable in a ran-
domized trial:

m1n = average outcome among non-co-operative people
who receive treatment

m0n = average outcome among non-co-operative people
who do not receive treatment.

Under assumptions 3 and 4, these averages do not depend on
assignment Z. Thus, m1n can be estimated directly from the
average outcome of those assigned to 0 but receiving 1 (Z = 0, 
X = 1); similarly, m0n can be estimated directly from the average
outcome of those assigned to 1 but receiving 0 (Z = 1, X = 0).

Table 2 summarizes the data expected from a study satisfying
assumptions 1–4, using the above notation. It shows that we
can write m•1, the average outcome if everyone were assigned
treatment 1, as a weighted average of the average outcomes for
co-operative people and non-co-operative people, with weights
equal to the respective proportions of each type of person:

m•1 = pcm1c + p0m1n – (1 – p1)m0n (1)

Similarly,

m•0 = p0m1n + (1 – p1)m0n + pcm0c (2)

Subtracting the second equation from the first yields

m•1 – m•0 = pc(m1c – m0c) = (p1 – p0)(m1c – m0c) (3)

 

ˆ ˆ – ˆ – . – . .p p pc 1 0= = = =9675

12 094

0

11588
0 80 0 0 80
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Thus, the effect m•1 – m•0 of assignment on the overall average
outcome can be viewed as the effect p1 – p0 of assignment Z on
treatment received X times the effect m1c – m0c of treatment
received X on the outcome Y among co-operative people.
Equation 3 exhibits the dilution of the Z effect produced by
non-compliance; pc quantifies this dilution on a scale from 0
(no Z effect if no compliance) to 1 (Z effect equals X effect if
full compliance).

We can solve equation 3 for the effect of treatment X among
co-operative people to get

m1c – m0c = (m•1 – m•0)ypc = (m•1 – m•0)y(p1 – p0) (4)

This equation shows that, subject to the assumptions, we can
estimate the effect of treatment received X on the average
outcome among co-operative people as the estimated effect of
treatment assignment Z on the overall average outcome divided
by the estimated effect of treatment assignment on the received
treatment X. The Appendix gives a formula for the variance of
this estimate. Because m•1 – m•0 and p1 – p0 equal the Z-
coefficients from the linear regressions of Y on Z and X on Z, the
effect estimate from equation 4 equals the classical IV-regression
estimate.2

Returning to the example, the unadjusted estimate of the risk
difference produced by treatment (which is confounded by
non-compliance) compares X = 1 to X = 0:

124 – 100 000 (34 + 74)y(2419 + 11 588) 
= –647 per 100 000 = –0.65%

(95% CI : –0.81%, –0.49%). In contrast, the usual ITT estimate
of the risk difference (which is a valid estimate of the risk
difference caused by assignment to vitamin A) compares Z = 1 to
Z = 0:

m̂•1 – m̂•0 = 380 – 639 = –259 per 100 000 = –0.26%

(95% CI : –0.44%, –0.08%); this is a 259/639 = 41% risk
reduction. The IV estimate is

(m̂•1 – m̂•0)yp̂c = –259/0.80 = –323 per 100 000 = –0.32%

(95% CI : –0.55%, –0.10%), which is a 324/639 = 51% risk
reduction. (Because the original data are unavailable, the
confidence limits were computed assuming simple random-
ization, and so are incorrect to the extent that village effects are
present.) It thus appears that the unadjusted estimate severely
overestimates the treatment effect, but that the ITT estimate
somewhat underestimates the effect.

Choice of target effect

In the above example the effect of vitamin A, m1c – m0c, is an
effect restricted to co-operative people. This effect is useful if we
think that co-operative people in the trial are typical (with
respect to treatment effect) of people who will accept the
treatment they are assigned. Aside from such generalizability
issues (which arise in all trials), a conceptual problem is that 
we often cannot identify co-operative people with any 
certainty.8,18 We can of course ask trial participants (or, above,
their parents) assigned to and receiving a treatment if they
would have obtained and taken that treatment had they not
been assigned to it, but the reliability of the responses would
ordinarily be unknown (even to the participant).

Under assumption 4 and the assumption that the treatment
would never be received by those not assigned to it (which is
plausible in the above example), we may identify as co-
operative those people who receive treatment among those
assigned to treatment. Otherwise, although we can estimate
the proportion pc of co-operative people (to whom our estimate
of m1c – m0c applies), we cannot characterize those people.
The only behavioural effect we can always identify is the 
effect of assignment Z on treatment received X within our
trial.

Sometimes, the effects of treatment under strictly enforced
regimens are of central interest in planning mandatory
programmes of otherwise unavailable prophylactics (such as
vaccines). Define

mjf = average outcome if everyone were forced to receive
treatment j.

In the example, m1f – m0f is the effect of forcing every child to
take vitamin A versus withholding the supplement from every
child. If co-operative and non-co-operative people differ in any
way related to the effect of treatment received (i.e. if the
variable co-operative/non-co-operative modifies the effect of
X), the effect of X among co-operative people will not suffice to
estimate the forcing effect. Unfortunately, we should expect
the selective non-compliance that confounds the naïve X = 1
versus X = 0 comparison to also make m1c – m0c unequal to
m1f – m0f. Thus, one should never presume that the IV
estimate of the effect is a valid estimate of the forcing effect,
even when it is a valid estimate of the effect on co-operative
people.

Estimation of ratio measures

A problem arises if one wishes to estimate measures that are
ratios of average outcomes, reflective of more general non-
collapsibility problems of ratio measures:25,26 Because logs of

Table 2 Expected data under assumptions 1–4 and text notation for a binary treatment variable X, with everyone assigned (Z = 1) or not assigned
(Z = 0) treatment. C = 1 for co-operators, N = 1 for non-co-operators who always have X = 1, N = 0 for non-co-operators who always have X = 0

If Z = 1: If Z = 0:

X = 1 X = 0 X = 1 X = 0

C = 1 N = 1 N = 0 N = 1 N = 0 C = 1

Average Y m1c m1n m0n m1n m0n m0c

Proportion pc p0 1 – p1 p0 1 – p1 pc

Overall average Y: pcm1c + p0m1n + (1 – p1)m0n = m•1 p0m1n + (1 – p1)m0n + pcm0c = m•0
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averages are not averages of logs, one cannot simply take Y as
(say) the log rate or log odds and apply the above formulas to
differences in these logs to obtain corrected log relative risk
estimates; one needs additional strong assumptions about
homogeneity of risks within levels of X and all controlled
covariates to use the formulas. Such assumptions are implicit in
IV methods based on regression modelling.2,11–16

Alternatively, under assumptions 1–3 and one more assump-
tion one may derive risk ratio (RR) estimators for the effect of
treatment among co-operative people, as well as alternative
risk-difference (RD) estimators18,23 (note, however, that the
formulas in Sommer and Zeger18 have serious misprints). For
example, suppose that p0 = 0, i.e. one cannot get treatment 1
(X = 1) without assignment to treatment 1 (Z = 1), so that the
only non-co-operators are those who do not receive treatment
when assigned to treatment (as in the example). Then, from
assumptions 1 and 3,

The proportion receiving treatment among the proportion
assigned to treatment, p̂1, is a valid estimate of pc.

People assigned to and receiving treatment (Z = X = 1) are
representative of all co-operative people in the trial, and so their
average outcome provides a valid estimate of m1c; call it m̂1c.

People assigned to but not receiving treatment (Z = 1, X = 0) 
are representative of non-co-operative people in the trial, and 
so their average outcome provides a valid estimate of m0n; call 
it  m̂0n.

As before, we can also estimate m•0 by the average outcome
among those assigned to 0 (Z = 0), m̂•0.

We can now solve equation 2 for m0c to obtain

m0c = [m•0 – (1 – pc)m0n]/pc (5)

and substitute the above estimates into this equation to get 
m̂0c. The ratio and difference of m̂lc and m̂0c are now the
estimated relative and absolute effects of received treatment on
the average outcome. In the example, p̂c = p̂1 = 0.80, m̂ lc =
12/9675 = 124 per 100 000, m̂•0 = 639 per 100 000, m̂0n =
34/2419 = 11 406 per 100 000, and so

m̂0c = [639 – (0.20)1406]/0.80 = 447 per 100 000

RR̂  = m̂lcym̂0c = 124/447 = 0.28,

RD̂ = m̂lc – m̂0c = 124 – 447 = –323 per 100 000.

The latter estimate is the same as the estimate obtained from
equation 4, although it was derived from the assumption that
p0 = 0, which is stronger than assumption 4 (from which equa-
tion 4 was derived).

Cuzick et al.23 derived a more general risk-ratio estimator
under an alternative assumption that the ratio is the same
(homogeneous) for co-operators and for all types of non-
compliers; when p̂1 = 0 (as in the example), their estimator
reduces to that just given. As with the other estimators, their
estimator also requires assumptions 1–3. Connor et al.27 also
derived formula 5 in the context in which treatment is screen-
ing and compliance is acceptance of screening, using assump-
tions equivalent to 1–3 and p0 = 0.

Insufficiency of the instrumental assumptions

Assumptions 1–3, which here define Z as an instrument, are not
sufficient to yield a point estimate of effects of the received
treatment X. They do allow setting of bounds for X
effects,4,6,7,10 but these bounds can be uselessly wide.9 Using
only assumptions 1–3 in the above example, Balke and Pearl10

derived non-parametric bounds for the forcing risk difference
m1f – m0f of –0.5% and 19%. The details of their derivation are
beyond the present paper, but their upper bound suggests
vitamin A might kill up to a fifth of the children, an absurd
value in light of the extensive background information on the
non-toxicity of vitamin A in the doses administered.20 Thus,
assumptions 1–3 plus the example data provide almost no
additional information beyond what is already known to place
an upper bound on the risk difference.

To obtain useful results, one will often need further plausible
biological (causal) or parametric statistical assumptions beyond
those embodied in assumptions 1–3. In the above example,
assumption 4 is quite plausible. An even more plausible
assumption is that vitamin A would not kill any of the children.
With this ‘no harm’ assumption replacing assumption 4, the ITT
estimate (-0.26%) is an upper bound for the forcing risk
difference; this bound is obtained by assuming that no death in
the group with Z = 1 and X = 0 (who are non-co-operative
people) would have been prevented by forcing every child to
take vitamin A. A companion lower bound of 12/12 094 –
74/11 584 = –0.54% is obtained by assuming that every death in
the group with Z = 1 and X = 0 would have been prevented by
forcing treatment on these children. These bounds are only for
the point estimate of effect that would be obtained under a forced
regimen; they do not account for random errors in the numbers
of deaths. Nonetheless, the lower bound is already implausibly
low on biological grounds, for we can be sure that treatment
could not have prevented every death in the Z = 1, X = 0 group.

Instrumental variables for 
misclassification correction
One obtains a different perspective on IV methods by con-
sidering a surrogate or noisy measure Z for the exposure of
interest X. The chief difference from the confounding problem
is that no causal interpretation of the associations is required;
the methods apply even for a purely descriptive (associational)
analysis. Thus, for simplicity, in this section I will set aside U; 
I will also assume Y is measured without error. Assumption 3
then simplifies to

3’) Z is independent of Y given X

This assumption corresponds to the notion that error in Z as a
measure of X is non-differential with respect to the outcome;
this error may have systematic as well as random components,
as long as neither component is associated with Y.

Given assumptions 2 and 3’, we can validly estimate the
association of Y with X using IV formulas, provided we have
validation data that show how Z predicts X in our study (i.e.
that provide estimates of the predictive values for Z as a
measure of X). To see this relation for a binary exposure X in a
cohort study, for each exposure level j (j = 1 or 0) define

mX=j = average outcome among those with X = j
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mZ=j = average outcome among those with Z = j

pj = probability that X = 1 when Z = j for the entire cohort;

p1 and 1 – p0 are then the positive and negative predictive
values for the entire cohort (without regard to the outcome).

Under assumption 3′, Z has no effect on Y other than through
Z; hence, the average outcomes within levels of X do not change
across levels of Z, and in particular equal the mX=j. Further-
more, the average outcome mZ=j within a given level j of Z is
just the average of the average outcomes within levels of X,
weighted by the probabilities of the X levels within the Z level;
that is,

mZ=1 = p1mX=1 + (1 – p1)mX=0 and 
mZ=0 = p0mX=1 + (1 – p0)mX=0 (6)

Subtracting the second equation from the first yields

mZ=1 – mZ=0 = (p1 – p0)mX=1 – (p1 – p0)mX=0
= (p1 – p0) (mX=1 – mX=0) (7)

We now solve this equation to get

mX=1 – mX=0 = (mZ=1 – mZ=0)y(p1 – p0). (8)

This equation shows that, subject to the assumptions, we can
estimate the exposure-specific outcome difference as the ratio of
the surrogate-specific outcome difference (the Z-Y association)
and the difference of the surrogate-specific probabilities of 
X = 1 (the Z-X association).

Use of validation data

Equation 8 does not require any data that directly relate the
true exposure X to the outcome Y: We can correct the estimate
from a study relating the surrogate Z to the outcome provided
we can construct accurate estimates of p1 and p0 from a valida-
tion study relating the true exposure to the surrogate. If, how-
ever, the validation data also show the relation of the true
exposure to the outcome (as would be the case if they were a
random sample from the study relating surrogate to outcome),
the IV-corrected estimate from applying equation 8 to the
unvalidated data can and should be combined with the direct
estimate from the validation data. Such data combination is
done most efficiently with regression modelling.15,28 Validation
data that are not restricted on the outcome (e.g. that include
both cases and non-cases when Y is a disease indicator) also
allow one to test assumption 3 and to use methods that do not
require that assumption.28–30

Relation to confounding control

The resemblance of equation 8 to 4 reflects an underlying com-
mon feature of the two situations. In both, we lack complete
data on the relation of X to Y. In the non-compliance problem,
we lack data on who is co-operative; the IV method uses the 
X-Z data to correct for the dilution of the Z-Y association as a
measure of the X effect that results from inclusion of non-
co-operative people in the intent-to-treat comparison. Similarly, in
the classification problem we lack data on who is correctly classi-
fied; the IV method uses X-Z data to correct for the dilution result-
ing from the inclusion of the misclassified data in our comparison.

There is a distinction, however: For misclassification, assump-
tion 3’ implies that the X-Y association is the same among the
correctly and incorrectly classified; hence, the corrected esti-
mate applies to the entire study cohort. In contrast, for con-
founding control, the assumptions do not imply that the effect of
X on Y would be the same for co-operative and non-
co-operative people; hence, the corrected estimate applies only
to co-operative people (who may be difficult to identify). This
distinction does not appear in classical IV methods, as these
methods are based on models in which the X effect on Y is
homogeneous across covariates U. (Note that, by assumption 3,
Z has no effect and so the X effect must be homogeneous within
levels of Z.)

Discussion
The above corrections extend directly to situations requiring
adjustment for measured covariates by applying them within
covariate strata and summarizing; nonetheless, a more efficient
approach is supplied by IV methods based on regression
models.15 Those methods are often presented under the head-
ing of regression-calibration or linear-imputation methods13,29

but are special cases of general IV regression formulas. Bashir
and Duffy29 provide an elementary introduction to linear
imputation and other measurement-error corrections, while
Carroll et al.15,28 provide advanced and thorough coverage of
model-based corrections, including general IV corrections; the
latter allow both Y and X to be measured with error in both the
main and validation sample, as long as that error is uncorrelated
with Z.

An important limitation of corrections based on regression
models is their model dependence, especially on the models for
error distributions. For example, P-values and confidence limits
from the basic regression-calibration (linear-imputation) form
of IV correction assumes that the regression of the true
(biologically relevant) exposure X on the instrument Z follows
a linear model with normal errors.13,29 This model is highly
implausible in many situations and is mechanically impossible
to satisfy if X and Z are discrete. This limitation is not shared by
non-parametric methods4–10 and special methods for cate-
gorical variables.30–32

In purely observational studies (in which neither the instru-
ment Z nor the treatment X has been subject to experimental
manipulation), a major limitation of all IV methods is their
strong dependence on assumptions 1 and 3. The corrections
may even be harmful if Z is associated with other errors or with
unmeasured confounders, as might be expected if (say) Z is self-
reported alcohol consumption, X is true consumption, Y is cog-
nitive function, and U is use of illegal drugs. Thus, IV corrections
are no cure for differential errors; they address only independ-
ent non-differential errors, as embodied by assumptions 1 and 3.
If there are violations of the assumptions, bias due to measure-
ment error (using Z as a surrogate for X) will no longer act multi-
plicatively (as in formula 7) and adjustment will require more
complex formulas.15,28

The sensitivity of IV corrections to the assumptions increases
with the amount of non-compliance or the amount of error in
Z as a measure of X; the corrections will be especially unreliable
if Z is a very noisy measure of X, so that the association of Z and
X is weak.33 The key to successful IV correction is thus to find
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an instrument Z that is strongly associated with the exposure X
but not otherwise associated with uncontrolled factors affecting
Y or with other sources of error. Such instruments may be
difficult to find when only self reports of sensitive personal
characteristics are available, but can sometimes be found or
created from records or physical measurements.13,15

Finally, one should be aware that the IV corrections (like
most epidemiological statistics) are large-sample procedures,
which means they include some bias due to sample-size
limitations, even if all the assumptions are met. For linear-
regression IV corrections this bias is in the direction of
undercorrection,33 and so should be of less concern than the
effects of biased measurement. Furthermore, this bias decreases
with increasing association between Z and X,33 which provides
further impetus to find instruments highly associated with X.

Despite the aforementioned cautions, IV corrections can be
valuable in many situations. When the IV assumptions are
questionable, the corrections can still serve as part of sensitivity
analysis or external adjustment.34 When the assumptions are
more defensible, as in field trials and in studies that obtain
validation or reliability data, IV methods can form an integral
part of the analysis.
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Appendix
To derive the variance of the estimator based on equation 4, 
let m̂jkdenote the sample outcome mean at X = j, Z = k, mjk =
E(m̂jk), m•k = mlk + m0k, Vjk = var(m̂jk), p̂k the sample propor-
tion of X = 1 among Z = k, q̂k = 1– p̂k, pk = E(p̂k),pc = p1 – p0,
Vpk = var(p̂k). The exact formulas for Vjk and Vpk depend on the
type of randomization used (e.g., simple, stratified, or cluster).
The following derivation assumes that each randomized unit
contributes only a small portion of each estimated quantity, so
that approximately the m̂jk are jointly independent, the p̂k are
jointly independent, and m̂jk is independent of p̂l–k; it also uses
the fact that var(p̂k) = var(q̂k) = –cov(p̂k, q̂k). We then have

(A1)

(A2)

(A3)

(A4)

Let d be the IV parameter (m•1 – m•0)/pc and d̂ the IV esti-
mator (m̂•1 – m̂•0)/p̂c. Combining A1–A4 with the Taylor
approximation for variances of ratios of random variables35

yields

(A5)

An estimate of var(d̂) is obtained by substituting sample
estimates for parameters in A5.
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