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Introduction

It is perhaps not too great an exaggeration to say that

Judea Pearl’s work has had a profound effect on the theory

and practice of epidemiology. Pearl’s most striking contri-

bution has been his marriage of the counterfactual and

probabilistic approaches to causation.1 The resulting tool-

kit, particularly the use of counterfactual concepts and dir-

ected acyclic graphs (DAGs) has been extended by some

epidemiologists to remarkable effect,2,3 so that some prob-

lems which were previously almost intractable can now be

solved relatively easily. What we previously tried to under-

stand using words, probabilities and numerical examples

can now be explored using causal diagrams, so that mind-

bending problems such as Berkson’s Bias can be explained

and understood relatively easily.4,5

However, like War and Peace or Finnegan’s Wake, al-

though most epidemiologists have by now heard of Pearl’s

work, we suspect that relatively few have read it, at least not

in the form of the original texts.6,7 It is therefore of consider-

able interest that Pearl, together with Madelyn Glymour and

Nicholas Jewell, has now produced a primer Causal Inference

in Statistics.8 Their motivation, set out in the preface, is that

‘statisticians are invariably motivated by causal questions’ but

that the ‘peculiar nature of these questions is that they cannot

be answered, or even articulated, in the traditional language

of statistics’. They note that the development of new tools for

causal inference over the decade has not excited statistical

educators and that they are ‘essentially absent from statistics

textbooks, especially at the introductory level’. We would add

that the same is true in epidemiology, and that whereas there

are debates about the relative prominence of these tools (as

illustrated in recent papers and correspondence in the IJE1,9–

15), it is essential that biostatisticians and epidemiologists alike

are familiar and comfortable with these tools.

Given the complex nature of some of the concepts and

methods covered, particularly for those who are not familiar

with them, the book is remarkably accessible and clearly

written. Chapter 1 introduces the fundamental concepts of

causality, including the causal model. Chapter 2 explains

how causal models are reflected in data, and how one might

search for models that explain a given data set; graphical

methods–in particular causal directed acyclic graphs

(DAGs)–are introduced. Chapter 3 is concerned with how to

make predictions using causal models. Chapter 4 then intro-

duces the concept of counterfactuals, and discusses how we

can compute them and what sorts of questions we can answer

using them. The companion website [www.wiley.com/go/

Pearl/Causality] is a valuable resource and provides answers

to the many study questions throughout the book that help

with learning and understanding (it is not straightforward to

register with Wiley for this and you are initially taken to a

site that appears to advertise the book only, but if you can ne-

gotiate the site, it will help you get the most out of the book).

Key concepts

There are a number of key concepts and tools which are

clarified in the book, but we will focus here on three: (i)
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the relationship between causality and statistics; (ii) con-

cepts of causality; and (iii) causal DAGs.

The relationship between causality and statistics–

Simpson’s Paradox and the importance of context

The book starts with a simple example of Simpson’s

Paradox showing how the results of a drug study in pa-

tients with an (unspecified) illness may look quite different

depending on whether the findings are stratified by gender;

if not, the drug appears to be decrease survival, whereas it

actually increases survival within men and within women.

This ‘confounding by gender’ can be readily addressed

using stratification or any other form of adjustment, such

as multiple regression. However, the same data are then re-

presented with the name of one of the variables changed.

The potential stratification variable is now high/low post-

treatment blood pressure (BP), and it is known that the

drug can lower blood pressure. The results are the same in

the two examples (i.e. whether the strata are gender or

post-treatment blood pressure, the drug decreases survival

in aggregate data but improves it when stratified by gender

or post treatment BP, with exactly the same magnitude and

direction of results in both cases); only one variable name

has been changed. But, in the former example, the correct

result lies in the sex-stratified (segregated) results, whereas

in the latter example it lies in the non-stratified by post-

treatment blood pressure data (i.e. the aggregated results).

Moreover, there is no statistical method which can help us

to identify which of the two scenarios apply to a particular

data set or analysis approach (aggregate or stratified). This

can only be decided by information from outside the data

set (e.g. that gender is a potential confounder and that the

drug in part may increase survival by reducing BP).

Importantly, Pearl et al. use this example to illustrate

the more general point that ‘causation is not merely an as-

pect of statistics; it is an addition to statistics, an enrich-

ment that allows statistics to uncover workings of the

world that traditional methods cannot’. Thus, we need to

understand how and why causes influence their effects.

This is not only essential in deciding how to analyse the

data in a particular study in a particular population. It is

also only by understanding how and why causes have their

effects that we can also understand why causes may not

have the same effects in other contexts. Thus, generaliz-

ability is a scientific process, not simply a matter of statis-

tics (interestingly the book is titled Causal Inference in

Statistics, thus implying that causal inference can involve

statistics and vice versa, but they are not the same thing).

This emphasis on the context in which causes occur (‘the

causal story behind the data set’ as Pearl et al. refer to it),

contrasts with much frequentist theory in which

generalizability is mainly conceptualized in terms of sam-

pling from larger (infinite) populations, and also much of

randomized controlled trial (RCT) theory in which the

focus is on effect estimation rather than aetiological

understanding.

Concepts of causality

Given current debates,1,9–15 it is also of considerable inter-

est as to how causality is conceptualized by Pearl et al.:8

For our purposes, the definition of causation is simple,

if a little metaphorical. A variable X is a cause of a vari-

able Y if Y in any way relies on X for its value. . . X is a

cause of Y if Y listens to X and decides its value in re-

sponse to what it hears.

This is compatible with definitions that have been used in

epidemiology for many years16 (see for example

Lilienfeld,17 who stated that ‘a factor may be defined as a

cause of a disease, if the incidence of the disease is dimin-

ished when exposure to this factor is likewise diminished’)

as well as in some recent papers in the IJE.1,12

Note that there is no requirement here for any sort of

intervention, or in fact any specification of how the value

of X may change (or be changed). All that is required is

that if the value of X were different, then the value of Y

might also be different as a result.

It is particularly noteworthy that this inclusive pluralist

concept of causation inherently involves causes which have

been questioned in recent debates. In particular, causation

is not restricted to specific actions (e.g. exercising 1 h/day),

and ‘states’ such as ethnicity, gender, sex, obesity, hyper-

tension and high cholesterol levels can also be causes. As

with other causes of disease, some ‘states’ may be direct

causes (e.g. the risk of breast cancer depends on the value

of the variable ‘sex’), whereas others may only affect the

risk of disease in certain contexts (e.g. in the context of

sexism or racism). Furthermore, all of these different types

of causes can be represented in DAGs, and we can attempt

to estimate their causal effects (with varying degrees of suc-

cess) while controlling for confounding and other sources

of bias. Of course, one may wish to identify subgroups of

causes with particular characteristics (e.g. states, actions),

which are more or less prone to various types of bias.

However, these represent differences between various

types of causes; not between causes and ‘non-causes’.

Directed acyclic graphs (DAGs)

DAGs are increasingly used in epidemiology, but in our ex-

perience they are not universally taught to epidemiologists.

Even among early and mid-career epidemiologists, there
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appears to be a bimodal distribution of those who feel that

all epidemiological research questions should be addressed

using DAG(s) and those who seem to avoid them at all

costs. We agree with others9 that DAGs are useful tools,

but are neither necessary nor sufficient for causal inference.

Nevertheless, they can be an extremely valuable way of

illustrating the context (story) in which a causal question is

being asked; in particular, they can illustrate the assump-

tions being made in causal analyses, and help us question

their validity. For those less familiar with their use we pro-

vide a brief description of their key features in Box 1.

Using DAGs to decide what to adjust for and what not to

adjust for–confounding and collider bias

Epidemiologists are very familiar with the concept of con-

founding; many lay people also understand this concept, as

‘to confound’ has a straightforward (non-technical) mean-

ing (‘to fool’) which describes the problem of assuming

causality in the presence of uncontrolled ‘confounders’.

When DAGs are drawn appropriately they can clarify our

assumptions about confounders, and can point to situ-

ations where observed and unobserved confounders can be

controlled for. For example, when a confounding path

(back door path) includes unobserved variables that do not

influence exposure through any other path, the path may

be blocked by controlling for observed confounders

(Figure 1), assuming that these are accurately measured

and appropriately adjusted for.

This primer also illustrates how conditioning (adjusting)

on some variables–’colliders’–may introduce bias. Unlike

the word ‘confounding’, ‘collider bias’ is not so intuitive

and has no corresponding ‘lay’ meaning (it makes sense

only with the use of DAGs). A collider is a node (represent-

ing a variable) that has two arrows coming into it on a

path. Where a collider occurs, that back door path is

blocked (Figure 1); there is thus no need to adjust for the

collider as that path is already blocked. Importantly, ad-

justing on a collider opens up such a back door path, and

Box 1. Our summary of the basics of directed acyclic

graphs when used in causal inference

Features of DAGs:

1. Arrows (also known as ‘edges’ or ‘arcs’) connect

‘nodes’ which represent variables.

2. Arrows between nodes are directed. That is, only

single-headed arrows can be included in a DAG.

3. Relationships are acyclic. That is, there are no ser-

ies of arrows connecting nodes (i.e. no ‘paths’)

that lead back to a node (variable) already in the

path. The assumption is that a variable (in a given

population at a given time) cannot cause itself.

4. Ideally, every variable that influences two or more

other variables is shown in the DAG. In particular,

the focus should be on those variables that influence

the exposure and outcome. Though Pearl et al. in

this book show situations where causal inference

may be made without observing and adjusting for

all potential confounders (e.g. where a confounding

path can be blocked by conditioning on just one

variable in the path) and even where none of the

key confounders is observed [by using definite

(known) causal mediators], these unobserved con-

founders need to be depicted in the graph (they are

an essential part of the story/context).

5. Pearl et al., like others, use the DAG concept of

‘back door path(s)’ to define confounding. A back

door path is a series of arrows that link the expos-

ure with the outcome; back door paths have an

arrow going into the exposure at one end, and an

arrow going into the outcome at the other end of

the path. Some back door paths are shown in

Figure 1. To remove confounding, we want to

block all back door paths.

The meaning of arrows and drawing DAGs:

Arrows are drawn between any two variables accord-

ing to the following criteria:

1. An arrow from one variable to a second indicates

that you assume that it is plausible that the first

variable causes the second.

2. Where there is no arrow between one variable and

a second, this indicates that you assume that there

is no causal relationship between the first and se-

cond variable.

The absence of an arrow between two variables is

very important:

Indeed, if we think about confounding, the absence of

an arrow is as important as the presence of one. For

example, if we have an arrow from a variable to the

outcome of interest, but no arrow (or path made up of

a series of arrows) from that variable to the exposure,

then we are assuming that the variable is not a con-

founder. If in reality the variable is related to the ex-

posure, then any observed association between expos-

ure and outcome might be biased as an estimate of

causal effect due to residual confounding.
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Figure 1. Illustrative example–directed acyclic graph for the hypothesis that obesity is causally related to pre-eclampsia

Deciding what we should and should not adjust for on the basis of this DAG:

Scenario 1

Assume that current knowledge does not imply a plausible effect of addictive personality on smoking or obesity, or that there is a direct relationship of

SEP to PE risk, so these relationships (all shown with dashed arrows) are not included in the DAG in Scenario 1. We can make appropriate decisions

about what needs to be adjusted for and what should not be adjusted for to obtain a valid estimate of the causal effect of obesity on PE if we assume that

our DAG is correct [i.e. there are no other variables (nodes) or arrows that should be included] and that all variables are measured accurately (with little

or no misclassification). We want to adjust for confounding–i.e. we want to block all back door paths. In this scenario there are four unblocked.

Unblocked backdoor paths

• PE-Age at pregnancy-SEP-Smoking-Obesity;

• PE-Age at pregnancy-SEP-Obesity;

• PE-Age at pregnancy-Smoking-Obesity;

• PE-Smoking-Obesity.

Because age at pregnancy is in the first three paths, we can block all three of those by adjusting for age at pregnancy only: assuming our DAG is cor-

rect and pregnancy age is accurately measured and so adjusting on it can fully block those paths. The last path does not include age; to block that we

must control for smoking.

There is also one blocked path

• PE-Age at pregnancy -Smoking-SEP-Obesity; this is blocked because age and SEP collide on smoking.

However, we have said above that we have to adjust for smoking. When we do that, this path is unblocked and a spurious association between

Pregnancy age and SEP is generated. In this scenario we are going to adjust for pregnancy age, which will block this path even when we adjust for

smoking. To conclude, if we assume the DAG is correct and pregnancy age, obesity and PE are accurately measured (and there are no other sources

of bias), then adjusting for pregnancy age and smoking will provide a valid causal estimate.

Scenario 2

New research/knowledge provides evidence that: (a) Addictive personality is relevant to our causal understanding of obesity on PE and must be

added to the DAG as shown with dashed arrows (related to smoking and obesity) and (b) SEP is directly related to PE, also added to the DAG with a

dashed arrow. This introduces one new unblocked path (in addition to the ones above):

• PE-SEP-Smoking-Addictive personality-Obesity.

We do not have a measure of Addictive personality or SEP, but we can block this path by adjusting for smoking (assuming our DAG is correct and no

misclassification or other bias). We also still need to adjust for age and smoking to block the paths described above but now, when we adjust for

smoking, we unblock the following blocked back door paths:

• PE-SEP-Addictive personality-Obesity;

Because we generate a spurious association between SEP and Addictive personality, if we do not have a measure of either of these in our dataset,

the question is:

• Should we adjust for smoking to deal with confounding or should we not adjust for it because to do so would introduce collider bias?

The DAG cannot answer that–the answer lies in background knowledge and/or simulation studies that provide evidence for whether bias would be

greatest with or without adjustment for smoking.

Should we adjust for gestational age in either scenario?

Very often in perinatal epidemiology gestational age is conditioned on–frequently this is done by excluding women who do not have a term delivery

(i.e. where the baby is born before 37 weeks of completed gestation) either in the study design or analyses. In any analyses where exposure and out-

come influence gestational age (as in this example, and commonly for many questions in this field), we should not do this. To do so potentially intro-

duces a spurious association between Obesity and PE. In this specific case, that spurious association would be inverse and so this ‘collider’ bias

could produce an effect estimate that is weaker than any true positive effect (biased towards the null). Note that whereas SEP would rarely be a plaus-

ible cause of ‘Age’ in this example, it is plausible to assume that SEP influences the age at which women start their family and hence become preg-

nant, with young women more likely to be from lower SEP and older from higher SEP.19
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thereby produces a spurious association between the two

variables (e.g. exposure and disease) that it ‘connects’.

Pearl et al. explain collider bias by using a theme that runs

throughout the book, in which they define conditioning (or

adjusting) as ‘filtering’ by the value(s) of the conditioning

variable. In a very clear and simple way they point out that

if Z is a collider for X and Y (i.e. the variable Z is influ-

enced by X and Y; written in the book as Z¼X þ Y), and

X and Y are independent of each other, and no other vari-

ables influence X, then conditioning on Z is the same as fil-

tering on participants with the same value of Z. To take

Pearl et al.’s simple additive example, if we know (only)

that X¼3 for any participants that tells us nothing about

the value of Y for those participants. But if we also condi-

tion (filter) on Z (as well as knowing that X¼3) within

each stratum of Z, we now know the value of Y (if Z¼ 10,

Y must¼ 7; if Z¼5, Y must¼ 2; if Z¼ 1, Y must¼ -2. . .

and so on); by conditioning on (adjusting for) Z we have

generated a spurious association between X and Y.

This fits with Simpson’s Paradox as illustrated in

Chapter 1 of the book. Gender in the first example in

Chapter 1 is a confounder and should be adjusted for,

whereas post-treatment BP (the second example in Chapter

1) is a collider (influenced both by the drug and by recov-

ery from the (unspecified) illness that the participants were

suffering from) and should not be adjusted for.

In reality, few researchers would adjust for post-

treatment BP in a study exploring the effect of a drug on an

unspecified illness. Therefore, to illustrate collider bias fur-

ther we use a more plausible example in Figure 1. This

shows a DAG that might be drawn and used to inform

what we should (and should not) adjust for to explore the

causal effect of obesity on pre-eclampsia (PE) risk. The

DAG shows our assumptions that: socioeconomic position

(SEP) is at least plausibly causally related to obesity, smok-

ing and age (at pregnancy), but not (directly) to pre-

eclampsia, in scenario 1 that smoking is related to obesity

and PE; that age is related to smoking, obesity and PE; and

that both obesity and PE are related to gestational age at

birth of the infant. These assumptions are based, to some

extent, on research findings,18–20 but the DAG is also sim-

plified for illustrative purposes and does not show all

plausible influences on all variables represented in the

DAG (see later discussion on limitation of DAGs). This

DAG suggests that we can adjust solely for age at preg-

nancy and smoking to prevent confounding (including by

SEP; see Figure 1). Thus, if we did not have a measure of

SEP in our dataset, assuming that all other variables are ac-

curately measured and the DAG is correct, we can obtain

an estimate of the causal effect of obesity on PE risk. By

contrast, we should not adjust for gestational age at birth

as this is a collider on the path between PE and obesity (it

is influenced by both of them since obese women are likely

to have shorter duration pregnancies and those with PE are

more likely to have their pregnancy induced or ended early

by caesarean section). The importance of recognizing this

is that many studies in perinatal epidemiology do restrict

to term pregnancies only (either through excluding women

who deliver preterm from being in the study or from being

in analyses), without considering whether this might intro-

duce bias.

Front door paths and the possibility of not having to meas-

ure confounders. In section 3.4, Pearl et al. suggest that an

unconfounded causal effect can be estimated using obser-

vational data, even when there are back door paths that

cannot be blocked (because of unmeasured confounders).

This is done using a front door path. A front door path is

where there is one (or more) mediator(s) between the ex-

posure and outcome and where there are no confounders

of the exposure-mediator or mediator-outcome (Figure 2).

The concept is that if there are unmeasured confounders

between X (exposure) and Y (outcome) but no confound-

ers between X and a mediator (M) or between M and Y,

then the (unadjusted) associations of X and M and M and

Y can provide the causal effect of X on Y. It feels like

alchemy!

The example that Pearl et al. use to demonstrate this

refers to an old argument that smoking does not cause lung

cancer but rather that there are genes which influence both

smoking and (independently) lung cancer risk, and thus

confound the association of smoking with lung cancer.

They present a thought experiment in which ‘tar deposits

in the lung’ are a mediator between smoking and lung can-

cer, and show using a DAG (Figure 2), that an uncon-

founded causal effect can be estimated despite having no

measure of the genetic confounder. If the DAG presented

by Pearl et al. is correct, we agree that using this front door

approach could provide a valid causal effect estimate.

However, the example is fictional, and we struggle to im-

agine any situation in which there are not confounders be-

tween an exposure and a mediator, or mediator and

outcome or misclassification of the mediator that is corre-

lated with misclassification of the exposure.21–23 For us

this front door approach is theoretically interesting but not

likely to be widely applicable.

Mendelian randomization (MR), using genetic variants

in genes that encode the nicotinic acetylcholine receptor as

instrumental variables (IV), suggests a causal effect of

greater intensity of smoking on lung cancer (Figure

2b).24,25 However, instrumental variable analyses (which

Pearl et al. mention only in passing) have very different

DAGs from that shown in Figure 2a, and a different set of

assumptions (Figure 2b) from the more conventional
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approaches used in most of this book. These assumptions

bring their own potential sources of bias. However, genetic

variants are often valid IVs, and recent developments that

provide valuable sensitivity analyses of the potential viola-

tion of the IV assumptions when using MR, mean that MR

provides the potential for better causal inference in obser-

vational studies.26–30

Limitations of DAGs

We often find DAGs are useful for being explicit about as-

sumptions of the causal context and helping researchers to

better determine what should and should not be adjusted

for. However, their limitations should also be considered.

Clearly, they can only ever be as good as the context

(background information) that is used to draw them. For ex-

ample, if they are drawn solely on the basis of available data

rather than showing all key variables whether observed or

unobserved, then causal effect estimates may be (residually)

confounded. Perhaps more importantly, their use to guide

analyses also depends strongly on the accuracy of the avail-

able data. This is true of all epidemiology, but may be par-

ticularly true when DAGs are used to imply that ‘causal’

analyses are straightforward and can determine complex

causal paths, such as mediation with multivariable

approaches applied to observational data.21–23

By their very nature DAGs assume that relationships are

directed and acyclical. This will be true for many common

biological and epidemiological processes, but there are also

many exceptions in which truly cyclical or bidirectional rela-

tionships exist. It may be possible to resolve this with tem-

poral knowledge. For example, if it is plausible that

characteristic A at time one (At1) influences characteristic B

at a later time (Bt1þx) which then goes on to influence char-

acteristic A at a subsequent time [At1þy (where y is > x)], and

so on, these relationships can be represented in a DAG with

no violation of its directed and acyclic properties. The DAG

depicting these relationships treats characteristics at differ-

ent time points as distinct nodes. However, causal processes

cannot always be defined as directed and acyclical. This ‘lin-

ear’ approach to causality contrasts with complexity re-

search involving non-linearity and feedback loops which

cannot be readily summarized in a DAG.31

DAGs are also non-parametric, i.e. they make no as-

sumptions about the nature or form of the causal relation-

ships they depict, or even the direction (causative or

preventive) of potential effects. Statistical interaction or ef-

fect modification can also be difficult to depict, although

some methods have been proposed for doing this.3,32

Perhaps the largest limitation of DAGs is that they can

be used to indicate possible sources of bias but cannot eas-

ily indicate how likely or how strong the biases may be. In

one recent example relating to Berkson’s Bias,4, 5 DAGs

were extremely powerful in helping to identify the nature

of the bias, but not its strength. Berkson’s Bias produces

extremely biased results when a study involves prevalent

cases, a situation which cannot be easily represented by

DAGs. If a study involves incident cases, the DAG remains

the same, but (in this particular case) the bias becomes triv-

ial.4 In our experience, creative colleagues can use DAGs

to identify possible ‘collider bias’ in virtually any analysis,

but this tells us little about whether the bias is likely to be

large enough to be of practical importance.

U: GenotypeA B

X: Smoking M: Tar deposit Y: Lung cancer

U: Genotype

Z: Genotype X: Smoking Y: Lung cancer

This DAG is adapted from Pearl et al. (page 66)1 and used by them to 
illustrate how a frontdoor path can be used to test unconfounded
causal effects.
U: unmeasured confounders; X: exposure; M: mediator; Y: outcome.
Causal ques�on: does smoking cause lung cancer?
Pearle et al. suggest the causal effect of exposure (X) on outcome (Y) 
can be es�mated using the (unadjusted) associa�ons of X- mediator 
(M) and of M-Y. This is true if M (tar deposits in the lung) can be 
measured and the assump�ons shown in the DAG are correct:
• There are no confounders between X and M.
• There are no confounders between M and Y.
• There is no path from X to Y other than through M.

This DAG shows an example of a gene�c instrumental 
variable analysis (Mendelian randomiza�on).27-31

Z: gene�c instrumental variable; U: unmeasured 
confounders; X: exposure; Y: outcome.
Causal ques�on: does smoking cause lung cancer?
An unconfounded causal effect es�mate can be 
es�mated if the assump�ons shown in the DAG are 
correct:
• Z is robustly related to X.
• Confounders of X-Y are unrelated to Z.
• There is no path from Z to Y other than through X.

Figure 2. Pearl et al.’s front door and Mendelian randomization methods for testing unconfounded causal effects. A. Example of a front-door path to

test unconfounded causal effects. B. Example of a Mendelian randomization approach to test unconfounded causal effects.
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Related to this, in some situations the distinction be-

tween what to adjust for and what not to adjust for is not

simple even with a well-drawn DAG (Figure 1). For ex-

ample, let us assume that following well-conducted re-

search, it is clear that addictive personality is related to

both smoking and obesity and therefore should be added

to the DAG in Figure 1. Furthermore, new evidence sug-

gests it is plausible that SEP influences preeclampsia risk

through mechanisms that do not involve either maternal

age at pregnancy or her smoking. This also needs adding to

the DAG. However, we do not have data on either addic-

tive personality or SEP; now our conclusions about what

we should and should not adjust for are more complex.

Above, before consideration of this new knowledge, we

noted that we need only adjust for age at pregnancy and

smoking. However, with the addition of this new knowl-

edge, smoking is now a collider on the back door path PE-

SEP-addictive personality-obesity and if we adjust for it we

open that back door path (by generating a spurious associ-

ation between addictive personality and SEP). (see

Scenario 2; Figure 1). The question of whether the correct

(or best) causal estimate is with or without adjustment for

smoking cannot be answered from the DAG; though we

would suggest that adjusting for it, given its proximal rela-

tionships to obesity and pre-eclampsia, is likely to be most

important.33 In situations like this, the relatively new con-

cept of collider bias can lead to a tendency to not adjust for

a variable if there is a possibility of collider bias (‘collider

anxiety’4), even if the collider bias is likely to be very weak

whereas the uncontrolled confounding may be relatively

strong. Greenland described this situation in a seminal

paper in 2003.33 Although it will depend on the relative

strengths of all associations between confounders and col-

lider with exposure and outcome, in most situations more

proximal confounding will be more important to control

for. Greenland usefully provides suggestions for how one

might undertake sensitivity analyses to test this, though

they require appropriate contextual information to add

value.33

These limitations highlight a general issue that the DAGs

used throughout this book, as in the many methodological

papers that advocate their use, are extremely simple (in

order to illustrate specific methodological issues) and rarely

reflect the reality of the numerous auxiliary hypotheses

related to the main causal question (see below for more dis-

cussion). The DAG we show in Figure 1 is more complex

than many in the primer, but it is a simple representation of

the relationships that those of us working clinically and/or

academically in this area know are relevant. A, by no means

exhaustive, list of variables that ought also to be added to

the DAG includes parity, change of partner, multiple preg-

nancy, placental function and fetal growth. For each of these

we could go more ‘distal’, to add potential causes of the

proximal common causes of exposure and outcome [i.e. dis-

tal ancestors of the main exposure (obesity) and outcome

(PE)]. Where or when to stop is not clear. Software such as

DAGitty and the suite of DAG functions in R (dagR) can

deal with the most complex of DAGs and provide investiga-

tors with a minimum set of variables that should allow them

to deal with potential confounding without resulting in col-

lider bias. However, some studies using these packages fail

to appropriately take account of theoretical context, but ra-

ther control for a large number of variables without clear

reasoning and assume that this produces valid causal esti-

mates from purely observational data.34

Integrating diverse types of knowledge to answer

causal questions

The use of methods such as triangulation, in which the aim

is to integrate evidence from several approaches, that are

chosen because they are sufficiently different to be likely to

have different and unrelated key sources of bias that would

be unlikely to produce the same result (due to these

biases),35 may also be particularly important and even cru-

cial, along with evidence from time trends and ecological

studies. Going back to Pearl et al.’s front door example dis-

cussed above, evidence that smoking was a causal factor

for lung cancer (rather than being confounded by genes or

other factors) came several decades ago from such an inte-

grative approach (including time trends in lung cancer inci-

dence and mortality),1,36 rather than a theoretically correct

but unrealistic DAG.

Thus, in epidemiology, the assessment of whether some-

thing is a cause is usually addressed through a process of

integrating diverse types of knowledge, even if this is rarely

acknowledged.37 Even when a particular study appears to

be decisive, there are always assumptions, theories and

contextual background information–from previous add-

itional studies–that are necessary for a definitive judgement

to be made.38 Thus, every process of causal identification

and explanation involves evidence of a variety of types and

from a variety of sources, and no single study is definitive.

This is partly due to the Duhem/Quine’s thesis’ that a the-

ory always relies on (but does not explicitly use) auxiliary

hypotheses, and if some consequences of the theory turn

out to be false, one of the auxiliary hypotheses rather than

the theory may be incorrect.39 The fact that leaves may be

observed to fly upwards in the wind does not necessarily

refute the law of gravity but may instead refute auxiliary

hypotheses (e.g. that there are no other forces operating

that are stronger than gravity). Similarly, every epidemio-

logical study involves the auxiliary hypothesis that no un-

controlled bias is occurring, and it may be this auxiliary
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hypothesis that is falsified rather than the main hypothesis

of interest. As Pearl et al. point out in Chapter 3, even in a

randomized controlled trial, a valid test of a theory (inter-

vention) can only be obtained if a number of auxiliary con-

ditions are met (full and/or unbiased participation, lack of

misclassification, lack of contamination of the comparison

group, etc.), and even a ‘perfect’ trial (which almost never

exists) is intended (by design) to produce false-positive re-

sults 5% of the time (noting that most RCTs are designed

to have sufficient power to detect a clinical/public health

meaningful difference at the conventional 5% level of sig-

nificance). Thus, interpretation of even the best possible

trials always involves auxiliary information. These issues

are considerably more acute in observational studies, but

they are not unique to epidemiology. This is how most sci-

ence works.39

Although any individual study can usually be represented

in terms of counterfactual contrasts, which can in turn be

represented in DAGs, it is difficult if not impossible to repre-

sent the overall process of epidemiological discovery and

causal inference using these methods. Even if the available

evidence is assessed at one particular point in time, the task

of combining a wide variety of evidence from a wide variety

of sources continues to be a matter of judgement,10 albeit

one that can be aided by particular considerations such as

those of Hill.37 None of this activity–the real ‘causal infer-

ence’–can be captured adequately in methods which focus

on causal inference in a single study with a single DAG.

Some of the commentaries in this issue suggest that DAGs

do take account of all such relevant knowledge,11 but

Krieger and Davey Smith challenge this.34

Concluding remarks

Pearl et al. note in their preface that over the past decade

the methods covered in this primer have resulted in a

‘transformative shift of focus in statistics research, accom-

panied by unprecedented excitement about the new prob-

lems and challenges. . .’. This has been accompanied by a

number of excellent textbooks that develop Pearl’s work

further (e.g. references 2 and 40). One of us (see references

1, 10 and 23) has been highly critical of the naive use of

these methods and of the accompanying claims that they

form a complete and sufficient theory of causal inference,

rather than merely a useful set of tools which are appropri-

ate in some situations but not others.9 However, we recog-

nize the value and power of these methods when used

appropriately and cautiously, together with other

approaches such as triangulation.35 The problem is how to

use these new methods critically and appropriately, rather

than being captured by them in a manner which redefines

and restricts what epidemiology is.1

This book thus represents a major resource for epidemi-

ologists to learn the use of methods (e.g. structural causal

models and DAGs) which have had major effects on the

theory and practice of epidemiology in recent years. Our

own experience in teaching is that these methods are ex-

tremely useful and would benefit from being introduced at

an early stage of introductory epidemiology courses, pro-

vided that they are used ‘in context’ (i.e. studying the dis-

tribution and determinants of health in populations) rather

than as a set of generic methods. They are not particularly

difficult except to those who have been trained using dif-

ferent concepts and methods. If they are used (carefully

and appropriately) from the beginning, then new students

can grasp these concepts relatively easily–just as a teenager

can usually use a modern cellphone easily whereas older

generations may struggle. However, the limitations of

these methods should also be considered in this teaching,

and they should always be used as part of the epidemiolo-

gical toolkit to address real-world problems (problem-

based epidemiology41–43) rather than being used ‘out of

context’ as a set of generic methods.
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