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Within the fields of epidemiology, interventions research and social sciences researchers are often faced with

the challenge of decomposing the effect of an exposure into different causal pathways working through defined

mediator variables. The goal of such analyses is often to understand the mechanisms of the system or to suggest

possible interventions. The case of a singlemediator, thus implying only 2 causal pathways (direct and indirect) from

exposure to outcome, has been extensively studied. By using the framework of counterfactual variables, research-

ers have established theoretical properties and developed powerful tools. However, in practical problems, it is not

uncommon to have several distinct causal pathways from exposure to outcome operating through different media-

tors. In this article, we suggest a widely applicable approach to quantifying and ranking different causal pathways.

The approach is an extension of the natural effect models proposed by Lange et al. (Am J Epidemiol. 2012;176(3):
190–195). By allowing the analysis of distinct multiple pathways, the suggested approach adds to the capabilities of

modern mediation techniques. Furthermore, the approach can be implemented using standard software, and we

have included with this article implementation examples using R (R Foundation for Statistical Computing, Vienna,

Austria) and Stata software (StataCorp LP, College Station, Texas).

causal inference; mediation; multiple mediators

Abbreviation: DAG, directed acyclic graph.

The purpose of this article is to provide a unified way of
analyzing problems with multiple mediators. As a motivating
example, consider the work by Hvidtfeldt et al. (1), in which
the effect of lifestyle factors on the risk of breast cancer was
studied. The authors considered 3 possible causal pathways
from exposure (lifestyle factors), for example, alcohol intake,
to breast cancer; the first is through estrogen levels, the sec-
ond is through insulin levels, and the third is a direct effect
(i.e., through other nonspecified mediators). The authors
(1) argue that the 2 indirect paths correspond to distinct
causal pathways, but nevertheless, the lack of tools to handle
several causal pathways restricts the analysis to consideration
of only 1 indirect path at a time. Each indirect pathway was
analyzed using the technique of Lange and Hansen (2). How-
ever, this approach is mathematically consistent only in the
absence of interactions. Furthermore, a hypothesis involving
both indirect paths (i.e., that the remaining direct effect is 0)
cannot be tested.

Consider briefly the situation of a single mediator in which
the standard approach, inspired by Baron and Kenny (3), in-
volves estimating the direct effect as the residual association
between outcome and exposure after regression adjustment
for the mediator(s) and the indirect effect by subtracting this
from the total effect (on an appropriate scale). It has been
shown that this approach works in the special case of linear
models without interactions, but it is fundamentally flawed
otherwise (4–6). A formal approach to mediation analysis has
now been developed, building on the counterfactual frame-
work of Pearl (7). Using ideas of Robins and Greenland
(8), Pearl (9) showed that the total effect of an exposure
can always be decomposed into “natural” direct and indirect
effects, regardless of the underlying statistical model. In the
last decade, conditions for identifying natural direct and in-
direct effects have been developed and refined (8–13). In
practice, estimation of natural effects can be done through
rather complex nonlinear functions of parameter estimates
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from regression models for the mediator and the outcome (2,
6, 10, 12–16). Recently, methods focusing on either ease of
implementation (17, 18) or robustness (19, 20) have been
suggested. None of these methods, however, considers the
case of multiple mediators working through different causal
pathways.
In the special case of only linear models without interac-

tions, the Baron and Kenny approach (3) can easily be
adapted to accommodate multiple mediators, as also noted
byMacKinnon (21). The present article suggests a unified ap-
proach applicable to any type of exposure, mediators, and
outcome (Web Appendices 1 and 2, available at http://aje.
oxfordjournals.org/). The method builds on the work in
Lange et al. (17). Although the method can, in principle,
be applied to any number of mediators and corresponding
causal pathways, only few (say 5) causal pathways would
seem reasonable in any practical application.

DEFINITIONS AND ASSUMPTIONS

The results of this article are based on the directed acyclic
graph (DAG) depicted in Figure 1, in which A is the observed
exposure of interest,M1, . . . ,MK are the mediators,C is a set
of baseline confounders, and Y is the outcome. Thus, it is as-
sumed that there is no unmeasured confounding for the
exposure-outcome relationship, exposure-mediator relation-
ship, and mediator-outcome relationship. Variables are al-
lowed to be of any type, for example, continuous, binary,
categorical, or survival (the last only for the outcome).
From Figure 1, it is evident that 1) there are no variables af-
fected by the exposure that confound any of the mediator-
outcome relationships, and 2) the mediators have no causal
effect on each other; this property can also be described as
the causal pathways being “nonintertwined,” which is how
the assumption will be referred to herein. This assumption
is crucial for the suggested procedure. Indeed, there is no ob-
vious way of defining a causal effect of a specific pathway if
this pathway is intertwined with other causal pathways (22).
In the case of a single mediator, this is referred to as the se-
quential ignorability assumption or the Pearl assumption (see
VanderWeele and Vansteelandt (6) for a discussion). The
precise mathematical formulation of the extended assump-
tion of sequential ignorability (i.e., nonintertwined causal

pathways) is presented inWebAppendix 3. If the causal path-
ways are intertwined, we have what is known as exposure-
dependent confounding or time-dependent confounding,
(see Martinussen et al. (23) for an in-depth discussion).
Note that it is not necessary to include all mediators, as
long as it is justified that these omitted mediators do not
have a causal effect on any of the included mediators. This
assumption is equivalent to the assumptions imposed in the
single mediator case.
In both the single and multiple mediator settings, the as-

sumption of nonintertwined causal pathways is required to
identify natural direct and indirect effects. If one is interested
only in direct effects and is willing to accept a slight change
of the definition of direct effects, so-called controlled direct
effects can be identified without the assumption of nonintert-
wined causal pathways (14). It should be noted that, although
natural direct and indirect effects provide a consistent way of
performing effect separation, they can never be estimated di-
rectly in any randomized trial because it is impossible to have
the exposure take on 2 different values for the same individ-
ual (see Imai et al. (24) for further discussion).
As in the DAG in Figure 1, we define the counterfactual

variable Ya;m1; : : : ;mK as the outcome we would have ob-
served, possibly contrary to the fact, had the exposure A
been set to the value a and the mediators M1, . . . , MK set
to m1, . . . , mK. Similarly, for each mediator (k = 1, . . . , K)
the counterfactual variable Mk

a denotes the value of the kth
mediator if, possibly contrary to the fact, the exposure A was
set to a.
As elsewhere in the causal inference literature (11), wewill

describe direct and indirect effects using nested counterfac-
tuals, Ya�;M1

a ; : : : ;M
K
a
, denoting the outcome that would have

been observed if A were set to a* and the mediators were
set to the values they would have taken if A were set to a.
(In)direct effects can be obtained by changing the exposure
from reference level at a single location in Ya;M1

a ; : : : ;M
K
a
;

for example, the Kth indirect effect is obtained by comparing
Ya;M1

a ; : : : ;M
K
a
with Ya;M1

a ; : : : ;M
K
a� . Such comparison can, for

instance, be made in terms of an average difference within
levels of covariates, E½Ya;M1

a ; : : : ;M
K
a
� Ya;M1

a ; : : : ;M
K
a� jC�, mar-

ginally, E½Ya;M1
a ; : : : ;M

K
a
� Ya;M1

a ; : : : ;M
K
a� �, or P½Ya;M1

a ; : : : ;

MK
a ¼ 1�=PðYa;M1

a ; : : : ;M
K
a� ¼ 1Þ as a risk ratio. The word

“natural” refers to the fact that we let the mediators take the
values they would take naturally when the exposure is set to
some specific value.
Before one can decompose the total effect of changing ex-

posure (e.g., alcohol intake) from a to a*, one must decide on
the order in which the exposure is changed from reference
level a. In the breast cancer example, this could be done by
first comparing the risk of breast cancer when both the direct
path and all indirect paths are kept at the reference level to the
risk when only the mediators are kept at the value they natu-
rally take when alcohol intake is at the reference level; this
will be the natural direct effect. Second, the risk when only
the mediators are kept at the value they naturally take when
exposure is at the reference level is compared with the risk
when insulin levels also take the value they naturally take
when exposure is not at the reference level; this will then
be the natural indirect effect through insulin levels. Finally,
estrogen is also set to the value it naturally takes when

Figure 1. Direct acyclic graph of the causal structure assumed
throughout the paper. Note that A is the exposure of interest,
M1, . . . , MK the mediators, C a set of baseline confounders, and Y
the outcome. ThemediatorsM2, . . . ,MK− 1 are not explicitly included
on the graph, but are only represented by dots. The structure of the
causal connections involving these omitted mediators must be the
same as, for example, M1. That is, M2 can be affected by A and C
and affects Y, but none of the other mediators.
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exposure is not at the reference level; this is the natural indi-
rect effect through estrogen. Mathematically, this corre-
sponds to the following definitions:

• Natural direct effect, E½Ya�;M1
a ;M

2
a
� � E½Ya;M1

a ;M
2
a
�

• Natural indirect effect through mediator 1, E½Ya�;M1
a�;M2

a
��

E½Ya�;M1
a ;M

2
a
�

• Natural indirect effect through mediator 2, E½Ya�;M1
a�;M2

a� ��
E½Ya�;M1

a�;M2
a
�.

Clearly, we could have interchanged the order of, for exam-
ple, insulin and estrogen (mediators 1 and 2), which could
have changed the size of these indirect effects. Only in the
absence of interactions are both direct and all indirect effects
unaffected by the order of the (hypothetical) interventions
(see Hafeman and Schwartz (11) for an in-depth discussion).

THE PROPOSED PROCEDURE

Marginal structural models are designed for the marginal
expectation (or distribution) of a counterfactual outcome
(25). They have become popular for nonnested counterfac-
tuals such as Ya. For instance, the total causal effect of the ex-
posure A on the outcome Y can be modeled in terms of a
marginal structural model of the form E[Ya] = b0 + b1a,
where b1 then captures the average causal effect of the expo-
sure. In the single mediator case, Lange et al. (17, 18) consid-
ered generalized marginal structural models for nested
counterfactuals, so-called natural effects models, which
directly parameterized natural direct and indirect effects as
follows:

gðE½Ya0;Ma1
�Þ ¼ αþ β0a

0 þ β1a
1 þ β2a

0 × a1:

Here, the exposure is included twice (a0 and a1) to accommo-
date that it essentially works through 2 distinct causal path-
ways. The function g is a link function specifying the
requested model for the outcome (e.g., the logistic model),
and β2 is an interaction term, which can be included if re-
quired. In the work by Lange et al. (17), survival outcomes
are also considered, and an estimation procedure based on
weighting is suggested.

The direct parametrization of natural effects can be gener-
alized to the multiple mediator case by a natural effects model
for Ya0;M1

a1
; : : : ;MK

aK
, given as

gðE½Ya0;M1
a1
; : : : ;MK

aK
�Þ ¼ αþ β0a

0 þ
XK
k¼1

βka
k

þ “possible interaction”; ð1Þ

where a0, . . . , aK are values of the exposure relative to each
of the causal pathways.

If the outcome is survival time, one would often use either
Cox or Aalen models (26), but these are not included in the
model class given by equation 1. Cox and Aalen models
assume that the hazard function corresponding to the

counterfactual survival time Ya0;M1
a1
; : : : ;MK

aK
can be expressed

as

λ0ðtÞ exp
�
αþ β0a

0 þ
XK
k¼1

βka
k

þ “ possible interaction”

�
or ð2Þ

γ0ðtÞ þ αþ β0a
0 þ

XK
k¼1

βka
k þ “possible interaction,” ð3Þ

where λ0(t) and γ0(t) are unspecified baseline hazards. When-
ever the outcome is a survival time, we will additionally as-
sume that censoring satisfies the usual assumptions (i.e., that
censoring is independent of event time (27)). The rest of this
article is devoted to estimating natural effects models that can
be written as in equations 1–3.

The following procedure is a generalization of the work of
Lange et al. (17), which, in turn, builds on ideas from Hong
(28). We first describe the procedure for dichotomous expo-
sure (assumed to be coded as 0 and 1) and afterward discuss
more general exposures. The procedure is performed as
follows:

1. Estimate a suitable model for the exposure conditional on
confounders using the original data set.

2. Estimate a suitable model for each of the mediators con-
ditional on exposure and baseline variables using the orig-
inal data set.

3. Test that each of the mediators is independent of the others
conditional on exposure and confounders. In practice, this
can be done by including the other mediators in the medi-
ator models in the last step and subsequently testing that
their effects are insignificant. If 1 of the other mediators is
significant, it indicates that either an important confounder
is missing or the assumption of nonintertwined causal
pathways is not met. For this reason, one can proceed to
the next step only if the other mediators have insignificant
effects.

4. Construct a new data set by repeating each observation in
the original data set 2K times and include new variables
A1, . . . , AK. The new variables are auxiliary exposure
variables and therefore take the value 0 or 1 in all combi-
nations of these. Thus, in the 2-mediator case with a bi-
nary exposure, each observation is repeated 22 = 4 times.
In practice, this is most easily done by first repeating the
observations twice, letting A1 first take the value 1 and then
the value 0. Next, the resulting data set is again repeated
twice, this time letting A2 first take the value 1 and then
the value 0. This procedure is repeated as many times as
there are mediators. Table 1 below illustrates how to con-
struct the extended data from the original data set.

5. Compute weights given by

Wi ¼ 1
PðA¼ AijC ¼ CiÞ

YK
k¼1

PðMk ¼Mk
i jA¼ Ak

i ;C ¼ CiÞ
PðMk ¼Mk

i jA¼ Ai;C ¼ CiÞ ;

ð4Þ
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where subscript i refers to row i in the extended data set
constructed in step 4. Thus, Mi and Ci are the values of
the mediator and baseline variables, respectively, in row
i. In most software packages, this can be done by using
predict functionality and the fitted models from steps 1
and 2 on the data set constructed in the previous step.

6. Fit a suitable model (e.g., logistic, Cox) to the outcome
including only A and A1, . . . , AK (and perhaps interac-
tions) as covariates and weighted by the weights from
the previous step. It can be shown that, provided the me-
diator models are sufficiently rich so as not to contradict
the restrictions imposed by the chosen natural effects
model, conservative confidence intervals can be obtained
as the estimate of the natural direct or indirect ±1.96 times
a robust standard error. These robust standard errors can
be obtained from most statistical programs. However,
we do suggest obtaining confidence intervals using boot-
strapping as a precaution.

If one is instead interested in conditional effects, step 1
(and the first fraction in the weights) can be skipped and C
included instead as additional covariates in the model in
the last step. Indeed, this is what is done in the implementa-
tion examples presented in Web Appendices 1 and 2.
The intuitive content of the weight formula is that the first

fraction ensures that the exposure-outcome association is ad-
justed for confounding by C. Indeed, the impact of upweight-
ing observations with a rare combination of exposures and
confounders is to create a pseudopopulation in which the ex-
posure is no longer associated with C and, thus, there is no
residual confounding by C (i.e., mimicking a randomized
trial). The second fraction of the weights serves to distinguish
between the direct and indirect paths by upweighting obser-
vations where the observed mediator value ðMk

i Þ would have
been more likely to occur under a different exposure value
ðAk

i Þ than the one actually observed (Ai).
Step 3 serves to justify the assumption of nonintertwined

causal pathways. However, it must be stressed that an insig-
nificant P value in this step does not guarantee that the causal
pathways are indeed nonintertwined. An insignificant P value
could just be the result of large statistical uncertainty. Ideally,
the nonsignificant P value should be combined with a narrow
confidence interval, but even this cannot replace subject
matter–based (i.e., nonstatistical) arguments further justify-
ing the assumption of nonintertwined causal pathways.
Although the proposed method used some of the same

tools (in particular, the creation of artificial exposure values
and subsequent weighting) as the parametric g-formula (29,
30), the 2 approaches are not closely linked because their end
goals are different (effect separation vs. estimating the effect
of a time-varying exposure).
The proposed procedure is widely applicable; however, it

may lend itself less ideally to the analysis of continuous me-
diators, because this requires substituting the probabilities
PðMk ¼ Mk

i jA ¼ Ai;C ¼ CiÞ in the weights by probability
densities, which, in turn, may yield unstable weights. For cat-
egorical exposures A, a minor modification is required in that
one must repeat the original data set as many times as needed
to ensure that, for each subject, Ak takes on all possible val-
ues. For continuous exposures, we recommend fitting naturalT

a
b
le

1
.

Il
lu
s
tr
a
ti
o
n
o
f
H
o
w
th
e
F
ir
s
t
2
R
o
w
s
o
f
th
e
O
ri
g
in
a
l
D
a
ta

S
e
t
A
p
p
e
a
r
in

th
e
E
x
te
n
d
e
d
D
a
ta

O
ri
g
in
a
l
D
a
ta

S
e
ta

E
x
te
n
d
e
d
D
a
ta

S
e
ta
,b

Id
e
n
ti
fi
c
a
ti
o
n

N
o
.

E
x
p
o
s
u
re

(A
)

M
e
d
ia
to
r

(M
)

O
u
tc
o
m
e

(Y
)

C
o
n
fo
u
n
d
e
rs

(C
)

Id
e
n
ti
fi
c
a
ti
o
n

N
o
.

E
x
p
o
s
u
re

(A
)

N
e
w

A
u
x
il
ia
ry

E
x
p
o
s
u
re

(A
1
)

N
e
w

A
u
x
il
ia
ry

E
x
p
o
s
u
re

(A
2
)

M
e
d
ia
to
r

(M
)

O
u
tc
o
m
e

(Y
)

C
o
n
fo
u
n
d
e
rs

(C
)

1
0
1

1
1

0
1

1
0
1

1
0

0
1

0
1

1
0
2

0
1

1
0

1
0
1

1
1

0
1

0
1

R
e
p
e
a
tc

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

1
0
1

1
0

1
1

0
1

1
0
1

1
1

1
1

0
1

1
0
2

0
0

0
1

1
0

1
0
2

0
1

0
1

1
0

1
0
2

0
0

1
1

1
0

1
0
2

0
1

1
1

1
0

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

R
e
p
e
a
t

a
F
o
r
s
im

p
lic
it
y
,
a
ll
v
a
ri
a
b
le
s
a
re

a
s
s
u
m
e
d
to

b
e
b
in
a
ry
.

b
B
e
c
a
u
s
e
th
e
e
x
p
o
s
u
re

is
b
in
a
ry

a
n
d
th
e
re

a
re

2
m
e
d
ia
to
rs
,
th
e
e
x
te
n
d
e
d
d
a
ta

s
e
t
w
ill
h
a
v
e
2
2
=
4
ro
w
s
fo
r
e
a
c
h
ro
w
in

th
e
o
ri
g
in
a
l
d
a
ta

s
e
t.

c
In
d
ic
a
te
s
th
a
t
th
e
s
k
e
tc
h
e
d
p
ro
c
e
s
s
s
h
o
u
ld

b
e
re
p
e
a
te
d
fo
r
a
ll
o
b
s
e
rv
a
ti
o
n
s
in

th
e
o
ri
g
in
a
l
d
a
ta

s
e
t.

516 Lange et al.

Am J Epidemiol. 2014;179(4):513–518

Downloaded from https://academic.oup.com/aje/article-abstract/179/4/513/128034
by University of Torino user
on 05 June 2018



effects models conditional on covariates to avoid instability
due to inverse weighting by the exposure distribution.
Here, the user is advised to follow the procedure prescribed
for categorical exposures but to replace Ak in row i by ran-
domly drawn exposures from the observed exposures (i.e.,
resampling). For continuous exposures, one must draw so
many samples for each original observation that the final es-
timates are not affected by the precise random draw; in our
experience, approximately 5 draws are adequate.

Web Appendix 3 contains a mathematical validation of the
procedure. In addition, Web Appendices 1 and 2 present im-
plementations of this procedure in R (R Foundation for Sta-
tistical Computing, Vienna, Austria) and Stata software
(StataCorp, LP, College Station, Texas), respectively.

DISCUSSION AND CONCLUSION

We have suggested a generally applicable method (in
which all types of mediators and most types of outcomes
are allowed) to estimate natural direct and indirect effects
through multiple mediators by extending the natural effects
models suggested by Lange et al. (17). The method can be
used in standard statistical software, and implementation ex-
amples are presented in Web Appendices 1 and 2.

The method requires that the individual pathways defined
by the chosen mediators correspond to distinct, noninter-
twined causal pathways. Our suggested 6-step procedure in-
cludes assessing whether the assumption of nonintertwined
causal pathways appears to be satisfied. As with the original
proposal of the estimation procedure in the single mediator
case presented by Lange et al. (17), the simplicity of the pro-
posed procedure comes at the price of not exploiting all avail-
able information in the data; thus, more efficient estimators
can, in principle, be obtained. In addition, the models used
for exposure, mediators, and outcome must be reasonable de-
scriptions of the true distributions. The advice, therefore, is to
conduct a thorough misspecification analysis for all the mod-
els used and to evaluate the stability of the weights (e.g., by
using histograms). In the case of a single mediator, Tchetgen
and Shpitser (19) and subsequently Zheng and van der Laan
(20) proposed estimators that are efficient and multiply robust
in the sense that they merely require the correctness of 2 out
of 3 models (the 3 models being those for the exposure, the
mediator, and the outcome) regardless of which 2 are correct.
However, these suggestions have not been generalized to
multiple meditators, and the implementation of these estima-
tors is more demanding at present.

Compared with the single mediator case, the method sug-
gested for the multiple mediator case explicitly states that the
different causal pathway must not be intertwined. However,
in the single mediator case, the usual assumption ensuring
identifiability of natural direct and indirect effects (i.e., se-
quential ignorability) also implies that the indirect causal
path must not be intertwined with paths through other medi-
ators (measured or unmeasured) not included in the analysis.
Naturally, when considering a richer DAG with more medi-
ators, this assumption appears more restrictive. These restric-
tions are, however, an unavoidable consequence of that
particular causal structure (manifested through the DAG)
and not a consequence of using the suggested approach to

deal with multiple mediators, per se. Finally, we note that
DAGs with multiple mediators, which do not satisfy the
assumptions discussed above, can rarely be analyzed by reduc-
tion to a single mediator problem because of likely exposure-
dependent confounding.

In summary, we have suggested a unified procedure for es-
timating natural direct and indirect effects through multiple
mediators. The procedure can be applied to almost any com-
bination of variable types and can be conducted in standard
software. Web Appendices 1 and 2 provide implementation
examples in R and Stata software, respectively.
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