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Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemi-
ology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure,
standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of mar-
ginal structural models have been developed to address this problem. However, in this paper we show how stan-
dard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total
effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and
time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models
(SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how
including propensity score adjustment is advantageous. We compare the causal effects being estimated using
SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable
more precise inferences, with greater robustness against model misspecification via propensity score adjustment,
and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on
a subsequent outcome is described.

direct effect; indirect effect; inverse probability weight; longitudinal study; marginal structural model; sequential
conditional meanmodel; time-varying confounder; total effect

Abbreviations: GEE, generalized estimating equation; IPW, inverse probability weight; MSM, marginal structural model; SCMM,
sequential conditional meanmodel.

This paper discusses estimation of causal effects from studies
with longitudinal repeated measures of exposures and out-
comes, such as when individuals are observed at repeated visits.
Interest may lie in studying the “total effect” of an exposure
at a given time on a concurrent or subsequent outcome or in
the effect of a pattern of exposures over time on a subsequent
outcome. These different types of effects are defined below.
Special methods have been developed to handle the complica-
tions of the time-dependent confounding that can occur in this
longitudinal setting (1), inverse probability weighted (IPW) esti-
mation of marginal structural models (MSMs) being the most
commonly employed, as well as others including g-computation
and g-estimation. Good introductions to these methods are avail-
able (2, 3), and while the other g-methods are still not widely
used, IPW estimation of MSMs is becoming more common-
place. In this paper we show how, in fact, conventional methods

can be used to estimate “total effects,” even in the presence of
time-dependent confounding, by controlling for prior expo-
sures, outcomes, and time-varying covariates. That is, we
provide a reminder that it is not always necessary to default
to using IPW estimation of MSMs or g-methods when there
are time-varying confounders. While standard regression
adjustment is often employed in studies using longitudinal
measures, issues of potential biases due to time-dependent
confounding are not always carefully considered and do
indeed result in bias if prior values of the exposure and out-
come are not controlled for.

The methods described in this paper are based on sequential
conditional mean models (SCMMs) for the repeated outcome
measures, fitted using generalized estimating equations (GEEs).
We set out the important considerations for securing results
against bias due to model misspecification and compare the
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effects that can be estimated using SCMMs and IPW estimation
of MSMs, as well as comparing the methods in simulation stud-
ies. IPW estimation of MSMs uses weighted regressions in
which each individual’s data at each time point receives a
weight equal to the inverse of an estimated probability that
that person had their observed exposures until that time, given
their other covariates up to that time. A drawback is that some in-
dividuals may have a large weight, which causes finite-sample
bias and imprecision, even when using stabilized weights.
This occurs particularly in studies with many visits or con-
tinuous exposures (4, 5). Several applications using IPW
estimation of MSMs have in fact considered total, particularly
short-term, effects (6–8) where simpler methods may have been
suitable andmore efficient.

We also present a new test of whether there are direct effects
of past exposures on a subsequent outcome notmediated through
intermediate exposures. The test can be used in conjunction
with the conventional methods as part of an analysis strategy
to inform whether more complex analyses are needed to esti-
mate certain effects.

ESTIMATING TOTALEXPOSUREEFFECTS

Setup and notation

Individuals are observed at T visits, = …t T1, , , at which
we observe the outcome Yt, the exposure Xt, and a vector of
covariates Lt. Figure 1 depicts how variables may be related
over time. UY and UX denote unobserved random effects
affecting Yt and Xt respectively. The set of measures up to
time t is indicated using a bar (e.g., ¯ = ( … )−X X X X, , ,t t t1 1 ). It
is assumed that Xt refers to a measure at a time point just
before that to whichYt refers. This would occur if Xt referred
to a status during [ − )t t1, and Yt referred to a status during
[ + )t t, 1 . Sensitivity analyses can be used to investigate as-
sumptions about temporal ordering. We focus on binary ex-
posures and continuous outcomes. Other types of exposures
and outcomes are discussed later.

Defining a total exposure effect

Figure 1 visualizes the primary issues arising in a longitudinal
observational setting, notably that prior exposure affects future
outcome, prior outcome affects future exposure and covariates,
and that there is time-dependent confounding by time-varying
covariates Lt: Lt are confounders for the association between
Xt andYt, but on the pathway from −Xt 1 toYt. Figure 1 could
be extended to allow non-time-varying covariates and more
lagged effects, (e.g., an arrow from −Xt 2 toYt).

The “total effect” of an exposure at time − ( =t a a
…)0, 1, , −Xt a, onYt includes both the indirect effect of −Xt a

on Yt through future exposures ( … )− +X X, ,t a t1 and the direct
effect of −Xt a on Yt not through future exposures. For exam-
ple, in Figure 1B the indirect effect of X1 onY2 is via the path-
ways → →X X Y1 2 2 and → → →X X YL1 2 2 2, and the direct
effect is via the pathways →X Y1 2 and → →X YL1 2 2. In
Figure 1 the total effect of Xt on Yt is the same as the direct
effect; we also refer to this as the “short-term effect.” In the
terminology of mediation, the direct effect corresponds to the
“controlled direct effect” (9). We refer to a “long-term direct
effect” as the effect of a lagged exposure ( = …)−X a 0, 1,t a
on a subsequent outcomeYt that is not mediated via interme-
diate exposures.

This paper does not consider another type of causal effect—
the joint effect of a particular pattern of exposures over a series
of time points on a subsequent outcome (e.g., the joint effect of

−Xt 1 and Xt onYt). Our focus is the total effect of a single expo-
sure on a subsequent outcome. Our definition of a total effect
does not make any statements about whether a treatment will
always be continued once it has started. Such total effects are
useful for a doctor making a pragmatic decision about whether
to start a patient on a treatment at a given time, accounting for
the fact that the patient may subsequently naturally deviate
from this treatment (or nontreatment) at a later visit.

To estimate causal effects, we assume no unmeasured con-
founding. This will generally hold only approximately in an
observational setting, and it is hoped that the most important
confounders are measured.

B)A)

Figure 1. Associations between an exposure Xt and outcome Yt measured longitudinally, with random effects UX and UY (circles indicate that
these are unobserved). A)Without time-varying confounders. B)With time-varying confounders.
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Sequential conditional meanmodels

We focus first on estimating the short-term effect of Xt on
Yt (which is also the total effect of Xt onYt) and, to discuss the
issues arising, first suppose that there is no random effectUY
so that longitudinal outcomesYt are correlated only via the Xt
and Lt. Consider the following model for the expected out-
come at time t conditional on exposures and covariates up to
time t:

¯( | ¯ ) = β + β + β + β ( )−E Y X X XL L, . 1t t t X t X t L
T

t0 1 2 1

Model (1) is a SCMM. If it is correctly specified and if
moreover the history −Xt 1 andLt is sufficient to adjust for con-
founding of the effect of Xt on Yt, then parameter βX1 repre-
sents the causal effect of Xt on Yt. As discussed below, this
effect can be estimated by fitting traditional regressionmodels.
Interaction terms, variable transformations, terms in and inter-
actions with t , and baseline covariates could be incorporated
into the SCMM. Model (1) extends directly to estimation of
total effect of ( = …)−X a 1, 2,t a onYt, for example:

¯( | ¯ ) = β + β + β + β
( )

− − − − − −E Y X X XL L, .

2
t t a t a X t a X t a L

T
t a0 1 2 1

In model (2)βX1 represents the total effect of −Xt a onYt.
SCMMs can be used to model total effects. However, their

use does not extend to modeling the joint effect of a particu-
lar pattern of exposures.

Estimation of SCMMs

The parameters of SCMMs can be estimated as the solution
to GEEs (10). In estimation with GEEs, care should be taken to
avoid biases that can arise, which we call “GEE bias.” In partic-
ular, the GEE estimates of the parameters in model (1) are unbi-
ased only under the assumption thatYt is independent of future
exposures and covariates conditional on past exposures and co-
variates for all = …t T1, , (11); ¯ ¯( | ¯ ) = ( | ¯ )E Y X E Y XL L, ,t t t t T T .
See Web Appendix 1 (available at https://academic.oup.com/
aje) for further discussion. Such biases can be avoided either by
using an independence working correlation matrix or, prefera-
bly, by including prior outcomes in the regression model, the
latter beingmore efficient:

¯( | ¯ ¯ ) = β + β + β
+β + β ( )

− −

−

E Y X Y X X

Y

L

L

, ,

. 3

t t t t X t X t

L
T

t Y t

1 0 1 2 1

1

Including the outcome history in the model is not only
desirable to increase precision but often also necessary when,
as in Figure 1B, the outcome history confounds the associa-
tion between Xt and Yt. We recommend adjustment for prior
outcomes in the SCMM.

Incorporating propensity scores

It may be advantageous to include adjustment for propensity
scores in the SCMM. The propensity score for an individual at

time t is their probability of having the exposure at time t condi-
tional on the past:

¯= ( = | ¯ ¯ ) ( )− −PS X X YLPr 1 , , . 4t t t t t1 1

One possible model for the propensity score is:

=
(ρ + ρ + ρ + ρ )

+ (ρ + ρ + ρ + ρ )
( )− −

− −
PS

X Y

X Y

L

L

exp

1 exp
, 5t

X t L
T

t Y t

X t L
T

t Y t

0 1 1

0 1 1

which can be fitted using logistic regression across all time
points combined. The estimated propensity scores, PSt, are
then included in the SCMM:



¯( | ¯ ¯ ) = β + β + β + β

+ β + β ( )
− −

−

E Y X Y X X

Y PS

L L, ,

. 6

t t t t X t X t L
T

t

Y t PS t

1 0 1 2 1

1

The propensity score model should include all variables
suspected predictors of both Xt andYt. Using propensity scores
gives two primary advantages (12). First, in linear models it de-
livers a doubly robust estimate of the exposure effectβX1, which
is unbiased (in large samples) if either the SCMM (3) or the
propensity score model (6) is correctly specified. Second, it
down-weights exposed individuals for whom no comparable
unexposed individuals can be found, and vice versa, thus avoid-
ingmodel extrapolationwhen there is little overlap in the covar-
iate distributions of exposed and unexposed individuals.

IPW estimation of MSMs

This approach is also based on regression. MSMs are usually
expressed in terms of an expected counterfactual outcome. We
define ¯Yt

xt to be the counterfactual outcome at time t for an indi-
vidual, had there been an intervention by which their exposure
history up to time t was ¯ = ¯X xt t. AMSMmust correctly specify
all treatment effects of interest, including long-term direct ef-
fects. Under the scenario in Figure 1, there are direct effects of
Xt and −Xt 1 onYt, implying theMSM:

( ) = ω + ω + ω ( )¯
−E Y x x . 7t

x
X t X t0 1 2 1

t

Parameters of MSMs are estimated using IPW, in which the
regression model implied by the MSM is fitted with the contri-
bution of each individual weighted by the inverse probability of
their observed exposures given their other covariates. Cole and
Hernán (13) give overviews of the construction of weights. The
estimation can be performed using weighted GEEs. GEE bias
can be avoided by using an independence working correlation
matrix. Unlike SCMMs, MSMs do not accommodate control
for outcome history via regression adjustment; hence GEE
bias cannot be avoided by adjustment for the outcome history
(14, 15).

If interest is only in a short-term treatment effect, it is suffi-
cient to specify a MSM based only on the short-term effect,

( ) = ω + ω ( )⁎ ⁎E Y x , 8t
x

X t0 1
t

provided that the confounding by past treatment −Xt 1 is ac-
counted for in the weights, by using unstabilized weights or
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by excluding past treatment from the numerator of the stabi-
lized weights.

SCMMs can also be expressed in terms of counterfactuals;
for example, model (3) can be written as

¯( | = ¯ ¯ )
= β + β + β + β + β ( )

¯
− −

− −

E Y X x X Y

x X Y

L

L

, , ,

, 9
t
x

t t t t t

X t X t L
T

t Y t

1 1

0 1 2 1 1

t

and the propensity score could also be included.

Comparison of estimands using SCMMs and IPW
estimation of MSMs

MSM (7) and (8) parameterize the short-term effect of inter-
est respectively as:

ω = ( − ) ( )( ¯ ) ( ¯ )− −E Y Y 10X t
x

t
x

1
,1 ,0t t1 1

ω = ( − ) ( )⁎ ( ¯ ) ( ¯ )− −E Y Y . 11X t
X

t
X

1
,1 ,0t t1 1

Both aremarginal effects. In contrast, in SCMM (3), the short-
term effect is the conditional effect:

¯β = ( − | ¯ = ¯ ¯ ) ( )( ¯ ) ( ¯ )
− − −− −E Y Y X x YL, , . 12X t

x
t

x
t t t t1

,1 ,0
1 1 1

t t1 1

For linear models βX1, ωX1, and ω⁎
X1 all represent the same

estimand, provided theMSMs and SCMM are correctly speci-
fied. For nonlinear models this no longer remains true due to
noncollapsibility. In linear SCMMs,βX1 in model (6) (including
the propensity score) and in model (3) (excluding the propen-
sity score) represents the same conditional effect provided either
the propensity score model or the SCMMexcluding the propen-
sity score is correctly specified. Interestingly, this holds even if
the functional form of the propensity score used in the SCMM
is misspecified, provided the exposure effect is the same across
all levels of the propensity score and the remaining predictors in
the model (12).

MSMs can be used to estimate marginal effects or effects
that are conditional on baseline variables. Stabilized weights
can be used to fit only MSMs that condition on predictors used
in the numerator of the weights; variables in the numerator
should be incorporated as adjustment variables in the MSM. In
our context, past exposure −Xt 1 can be considered a baseline
variable and included in the numerator of the stabilized weights,
provided the MSM also includes that variable (as in MSM (7)).
Unstabilized weights are most commonly used to estimate mar-
ginal effects, although they can also be used in fitting MSMs
that condition on baseline variables.

Extensions

Interactions. Because SCMMs estimate conditional ef-
fects, they extend straightforwardly to allow interactions between
exposure and time-dependent covariates. If interactions exist,
these should be incorporated into the SCMM. Failure to do so
will result in a misspecified SCMM. In SCMMs including the
propensity score, interactions between the covariate and the pro-
pensity score should be included for every covariate-exposure

interaction. For example, to incorporate interactions between
Xt andLt and between Xt and −Yt 1:






¯( | ¯ ¯ ) = β + β + β + β

+ β + β + η
+ η + η
+ η ( )

− −

−

−

−

E Y X Y X X

Y PS X

X Y PS

PS Y

L L

L

L

, ,

. 13

t t t t X t X t L
T

t

Y t PS t X t t

X t t PS t t

PS t t

1 0 1 2 1

1 1

2 1 1

2 1

Standard MSMs as described previously in this paper do
not accommodate interactions between the exposure and time-
dependent covariates because time-dependent confounders are
handled in the weights rather than by adjustment. If interactions
are present, MSMs are, however, still valid because they esti-
mate marginal effects. “History-adjusted MSMs” (HA-MSMs)
have been described that accommodate interactions with time-
dependent covariates; these assume a MSM at each time point
andmodel the counterfactual outcome indexed by treatment
that occurs after that time point, conditional on some subset of
the observed history up to that time (16, 17). However, HA-
MSMs have not been much used in practice, and their validity
remains in question (18).

Both MSMs and SCMMs can incorporate interactions
between exposure and baseline variables.

Continuous exposures. SCMMs easily handle continuous
exposures Xt because they use standard regression. In linear
SCMMs with a continuous exposure, it is advantageous to
include adjustment for the propensity score, for the same rea-
sons as discussed for a binary exposure, where here the propen-
sity score is ¯= ( | ¯ ¯ )− −PS E X X YL, ,t t t t t1 1 (12). In theory, IPW
estimation of MSMs extends to continuous exposures by speci-
fying a model for the conditional distribution of the continuous
exposure in the weights. Different ways of constructing these
weights have been compared (5), however the method has been
found not to workwell (4). Amajor concern is that correct spec-
ification of the entire distribution is difficult, and slight misspe-
cification of the tails could have a big impact on the weights.

Binary and survival outcomes. For a binary outcome Yt,
the SCMM (e.g., model (3)) can be replaced by a logistic
model. Propensity score adjustment is also advantageous in
logistic SCMMs (12), ensuring double robustness for the test
of no exposure effect. Logistic MSMs can also be used.

SCMMs excluding the propensity score deliver a conditional
odds ratio while MSMs deliver unconditional odds ratios; for a
binary outcome, these are different effects. SCMMs including
the propensity score estimate a different conditional effect. All
of these effects may be viewed as “causal.”A conditional effect
is sometimes of most realistic interest, in particular when
the exposed and unexposed are very different in their covariate
histories. In that case, the observed data may carry insufficient
information to infer the average outcome if everyone versus no
one were exposed, while there may be sufficient information to
answer that question for subgroups where there is sufficient
overlap (12, 19).

SCMMs and IPW estimation of MSMs can also be used to
study short-term exposure effects in a survival analysis setting
using Cox regression, using exposures and covariates mea-
sured at scheduled visits (20). This is an area for further work.
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A TEST FOR LONG-TERMDIRECT EFFECTS

SCMMs give insight into total exposure effects. However, it
is useful to understand whether earlier exposures directly affect
a subsequent outcome other than via intermediate exposures.
Focusing on Figure 1B, we outline a test for the existence of
any direct effect of −Xt 1 onYt, except that mediated through Xt.
This long-term direct effect is represented by unblocked path-
ways from −Xt 1 toYt that do not pass through Xt.

The test uses the following steps:

Step 1. Fit a SCMM forYt given Xt and the covariate his-
tory up to time t , including prior exposures and out-
comes. This is used to infer the short-term effect of Xt
onYt.

Step 2. Using the model from step 1, obtain the predicted
outcomes Ŷt when = ( = … )X t T0 1, ,t (i.e., when we
force no effect of Xt onYt).

Step 3. The test of interest is now a test of the hypothesis
that Ŷt is independent of −Xt 1 given the covariate history
up to time −t 1. This hypothesis can be tested by fitting a
model for −Xt 1 given the covariate history up to time −t 1
and Ŷt; for example, for a binary exposure we would test
the hypothesis that δ = 0Y in the model:

¯
¯

¯

( | ¯ ˆ ¯ )

= (δ + δ ¯ + δ + δ ¯ + δ ˆ)
+ (δ + δ ¯ + δ + δ ¯ + δ ˆ)

( )

− − − −

− − ¯ −

− − ¯ −

E X X Y Y

X Y Y

X Y Y

L

L

L

, , ,

exp

1 exp
.

14

t t t t t

X
T

t L
T

t Y
T

t Y t

X
T

t L
T

t Y
T

t Y t

1 2 1 2

0 2 1 2

0 2 1 2

This is fitted across all visits combined.
The usual estimate of the standard error of δ̂Y will be erro-

neously small because it ignores that the Ŷt are predicted val-
ues. We therefore propose using bootstrapping.

Robins (21) proposed the direct effect g-null test, which is
readily applicable to test for the presence of long-term direct
effects. Relative to the Robins test, our proposed test has the
advantage of not relying on inverse probability weighting
and thus being more naturally suited to handling continuous
exposures. Our test, as described so far, assesses the presence
of long-term direct effects when setting xt to 0; it will gener-
ally be a good idea to additionally assess whether there is evi-
dence for long-term direct effects when setting xt to values
other than zero.

SIMULATION STUDY

We used simulation studies to compare SCMMs with IPW
estimation ofMSMs for the short-term effect of a binary exposure
Xt on a continuous outcomeYt, and to assess the performance of
the test for long-term direct effects. Data were simulated accord-
ing to Figure 1A, using =n 200 individuals observed at =T 5
visits (simulation scenario 1). To further assess the test for long-
term direct effects we generated data under a second scenario in
which there is no direct effect of −Xt 1 onYt (δ = 0Y in model
(14)), represented by a modification of Figure 1A with the ar-
rows from −Xt 1 toYt removed (simulation scenario 2). SeeWeb
Appendix 2 for details.

Methods

In each simulated data set under scenario 1, we fitted SCMMs
and MSMs using GEEs with independent and unstructured
working correlation matrices.We considered different forms for
the SCMMs andMSMs to illustrate earlier points onmodel mis-
specification andGEE bias.

The effect of Xt onYt is confounded by prior exposure −Xt 1
and prior outcome −Yt 1 (via UY), implying that to obtain an
unbiased effect estimate, the SCMM should either include

−Xt 1 and −Yt 1, or it should include −Xt 1 and use an unstructured
working correlation matrix. To illustrate the main points we
considered four SCMMs: i) ( | ¯ ¯ ) = β + β−E Y X Y X,t t t X t1 0 1 ; ii)

( | ¯ ¯ ) = β + β + β− −E Y X Y X Y,t t t X t Y t1 0 1 1; iii) ( | ¯ ¯ ) =−E Y X Y,t t t 1
β + β + β −X XX t X t0 1 2 1; and iv) ( | ¯ ¯ ) = β + β +−E Y X Y X,t t t X t1 0 1
β + β− −X YX t Y t2 1 1. The same SCMMs were fitted with adjustment
for the propensity score. The propensity score model for Xt

included −Yt 1 and −Xt 1.
To estimate a total effect using IPW estimation of MSMs,

the MSM should either correctly model the effect of expo-
sures on the outcome up to and including the exposure whose
total effect we wish to estimate (model (7)), or it should cor-
rectly model the effect of the exposure whose total effect we
wish to estimate (model (8)) and incorporate confounding by
past exposures in the weights. The models used to construct
the weights should include all confounders of the association
between Xt and Yt, including prior exposures and outcomes.
We considered two MSMs: 1) ( ) = ω + ω⁎ ⁎E Y xt

x
X t0 1

t ; and 2)
( ) = ω + ω + ω¯

−E Y x xt
x

X t X t0 1 2 1
t . Unstabilized and stabilized

weights were used and obtained using logistic regression
models fitted across all 5 visits. In the weight denominators,
we used a logistic model for Xt with −Xt 1 and −Yt 1 as predictors.
In the numerator of the stabilized weights, we used a logistic
model for Xt with −Xt 1 as the predictor. Unstabilized weights
are not recommended because they are known to be highly vari-
able, but we include them for comparison. It has been suggested
that weights could be truncated to improve precision (13). We
consider stabilized weights with truncation of the p% smallest
and largest weights ( = )p 1, 5, 10, 20 .

The test for long-term direct effects was performed in simula-
tion scenarios 1 and 2. In Step 1 we fitted a SCMM of the form

( | ¯ ¯ ) = β + ∑ β + ∑ β− = − = −E Y X Y X Y,t t t j Xj t j j Yj t j1 0 0
4

0
4 , where

Xt and Yt are set to zero for ≤t 0. The model fitted in Step 3
was as in model (14) using all lags of X andY (omitting ¯ −Lt 1).
A 95% confidence interval for δY was estimated using 1,000
bootstrap samples, using the percentile method (22, 23).We ob-
tained the percentage of the 1,000 bootstrap 95% confidence in-
tervals (23) that excluded 0. A P value for a 2-sided test of the
null hypothesis could be obtained as the number of bootstrapped
estimates of δY that lie more than a distance |δ̂ |Y from 0, divided
by the number of bootstrap samples, which should be large to
capture small P values.

Simulation results

Comparison of results from SCMMs and IPW estimation of
MSMs. Results are shown in Table 1. In the SCMMs, model
i fails to account for confounding by −Xt 1 and −Yt 1, and model
ii fails to account for confounding by −Xt 1; in neither case can
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this by accounted for using an unstructured working correla-
tion matrix, which only handles confounding by −Yt 1. Hence
SCMMs i and ii give biased effect estimates. Model iii, fitted
using an independence working correlation matrix, fails to
account for confounding by −Yt 1, resulting in bias. However,
the bias is eliminated by using an unstructured working correla-
tionmatrix. The analysis under model iii based on a noninde-
pendence working correlation structure would nonetheless

be subject to confounding bias and GEE bias when that
working correlation structure is misspecified, as is likely
when the outcome model is nonlinear. Model iv accounts
for both sources of confounding directly, giving unbiased
effect estimates using any form for the working correlation
matrix. We recommend SCMM iv with an independence
working correlation structure. Propensity score adjustment
delivers a double-robustness property and therefore gives

Table 1. Results of Simulation Studies to Compare Sequential Conditional MeanModels with Inverse Probability Weighted Estimation of
Marginal Structural Models

Modela
Independence Unstructured

Biasb 95%CIc SDd Biasb 95%CIc SDd

SCMM

Form of ( | ¯ ¯ )−E Y X Y,t t t 1

i)β + β XX t0 1 0.425 0.420, 0.430 0.081 0.256 0.251, 0.262 0.087

ii)β + β + β −X YX t Y t0 1 1 0.151 0.146, 0.156 0.080 0.050 0.045, 0.055 0.086

iii)β + β + β −X XX t X t0 1 2 1 0.115 0.109, 0.120 0.092 −0.002 0.008, 0.004 0.095

iv)β + β + β + β− −X X YX t X t Y t0 1 2 1 1 −0.001 −0.007, 0.005 0.095 0.001 −0.004, 0.007 0.095

SCMMusing propensity scores

Form of ( | ¯ ¯ )−E Y X Y,t t t 1

i) β + β + βX PSX t PS t0 1 0.001 −0.005, 0.007 0.096 0.001 −0.005, 0.007 0.095

ii) β + β + β + β−X Y PSX t Y t PS t0 1 1 0.001 −0.005, 0.007 0.096 0.006 0.000, 0.012 0.097

iii) β + β + β + β−X X PSX t X t PS t0 1 2 1 0.003 −0.002, 0.009 0.096 −0.002 −0.008, 0.004 0.095

iv) β + β + β + β + β− −X X Y PSX t X t Y t PS t0 1 2 1 1 −0.001 −0.007, 0.005 0.096 0.001 −0.005, 0.007 0.096

IPWestimation of MSMs

Unstabilized weights

i) ( ) = ω + ω⁎ ⁎E Y xt
x

X t0 1
t 0.022 0.001, 0.043 0.340 0.046 −0.137, 0.230 2.959

ii) ( ) = ω + ω + ω¯
−E Y x xt

x
X t X t0 1 2 1

t 0.007 −0.012, 0.026 0.306 3.635 −3.208, 10.478 110.4

Stabilized weights

i) ( ) = ω + ω⁎ ⁎E Y xt
x

X t0 1
t 0.297 0.291, 0.302 0.090 0.187 0.180, 0.194 0.110

ii) ( ) = ω + ω + ω¯
−E Y x xt

x
X t X t0 1 2 1

t −0.002 −0.009, 0.004 0.107 −0.060 −0.067,−0.053 0.114

Stabilized weights: truncated at the 1st and 99th percentiles

i) ( ) = ω + ω⁎ ⁎E Y xt
x

X t0 1
t 0.309 0.304, 0.315 0.087 0.196 0.190, 0.202 0.098

ii) ( ) = ω + ω + ω¯
−E Y x xt

x
X t X t0 1 2 1

t 0.018 0.012, 0.024 0.101 −0.051 −0.058,−0.045 0.106

Stabilized weights: truncated at the 5th and 95th percentiles

i) ( ) = ω + ω⁎ ⁎E Y xt
x

X t0 1
t 0.325 0.320, 0.330 0.086 0.214 0.209, 0.220 0.092

ii) ( ) = ω + ω + ω¯
−E Y x xt

x
X t X t0 1 2 1

t 0.025 0.019, 0.032 0.099 −0.043 −0.049,−0.037 0.102

Stabilized weights: truncated at the 10th and 90th percentiles

i) ( ) = ω + ω⁎ ⁎E Y xt
x

X t0 1
t 0.341 0.335, 0.346 0.085 0.225 0.219, 0.230 0.091

ii) ( ) = ω + ω + ω¯
−E Y x xt

x
X t X t0 1 2 1

t 0.044 0.038, 0.050 0.097 −0.032 −0.039,−0.026 0.100

Stabilized weights: truncated at the 20th and 80th percentiles

i) ( ) = ω + ω⁎ ⁎E Y xt
x

X t0 1
t 0.364 0.359, 0.370 0.083 0.236 0.231, 0.242 0.088

ii) ( ) = ω + ω + ω¯
−E Y x xt

x
X t X t0 1 2 1

t 0.067 0.061, 0.073 0.094 −0.021 −0.027,−0.015 0.097

Abbreviations: CI, confidence interval; GEE, generalized estimating equation; IPW, inverse probability weight; MSM, marginal structural model;
SCMM, sequential conditional meanmodel; SD, standard deviation.

a All models were fitted using GEEswith an independence working correlationmatrix and an unstructured working correlation matrix.
b Bias in the estimated short-term causal effect of Xt onYt averaged over 1,000 simulations.
c Monte Carlo 95% confidence interval corresponding to the bias.
d Empirical standard deviation of the estimates.
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unbiased estimates under all models using any working cor-
relation matrix.

MSM 1 ignores the direct effect of −Xt 1 on Yt; this can be
accounted for using unstabilized weights but not stabilized
weights. There is some small finite sample bias using unstabi-
lized weights. In practice, bias can also occur due to lack of pos-
itivity, which requires both exposed and unexposed individuals
at every level of the confounders (13).MSM2 is correctly spec-
ified, and the estimates are unbiased using either stabilized
weights or unstabilized weights. As expected, unstabilized
weights (Web Appendix 3 andWeb Table 1) give large empiri-
cal standard deviations, especially using an unstructured work-
ing correlation matrix. Stabilized weights improve precision,
but the empirical standard deviations remain larger than under
SCMMs. Precision was improved under truncation but comes
at a cost of bias, which is small using MSM 2 but quite large
usingMSM1.Using an unstructuredworking correlationmatrix
gives GEE bias; this is true for both unstabilized and stabilized
weights, but it is not evident here for unstabilized weights due to
large empirical standard deviations.

Web Table 2 shows results for 10 study visits, when the effi-
ciency of IPW estimation of MSMs compared with SCMMs is
further reduced. Results from additional simulation scenarios
(see Web Figure 1) are given in Web Appendix 4 and Web
Table 3. Simulations did not include time-varying covariatesLt:
Differences in precision of estimates from the two approaches
will generally be greater in this case.

Results from the test for long-term direct effects. In sce-
nario 1, the mean estimate of δY across 1,000 simulations was
7.253 (standard deviation, 1.854), and 99.7% of the 95% confi-
dence intervals for δY excluded 0, indicating evidence against
the null hypothesis of no long-term direct effect. In scenario 2,
the mean estimate of δY was 0.012 (standard deviation, 1.102),
and 5.2% of the 95% confidence intervals for δY excluded
0, demonstrating approximately correct type I errors.

DISCUSSION

We have shown how standard regression methods using
SCMMs can be used to estimate total effects of a time-varying
exposure on a subsequent outcome by controlling for con-
founding by prior exposures, outcomes, and time-varying co-
variates. We compared this with IPW estimation of MSMs,
which handles time-varying confounding when estimating
joint effects but which can also be used to estimate total
effects. Other methods for estimating joint effects include g-
estimation and g-computation (see Daniel et al. (3) for an
overview), which have not been used extensively in practice
(24–26). There is a close connection between SCMMs and
structural nested mean models (SNMMs) (26), in which a
parametric model is specified for the causal effect of interest
among people receiving a given level of treatment (e.g.,

¯ ¯{ ( | ¯ = ¯ )} − { ( | ¯ = ¯ )}( ¯ ) ( ¯ )− −g E Y X x g E Y X xL L, ,x
t t t

x
t t t

,1 ,0t t1 1 ). In
linearmodels, our propensity score adjusted estimates are equiv-
alent to efficient g-estimates in a SNMM for short-term effects
(27). When the remaining long-term direct effects are of inter-
est, estimation in linear SNMMs becomes more involved, but
it is still feasible using standard software (27, 28).

There is a large literature on adjustment for baseline out-
comes in studies of the relationship between an exposure and
a follow-up outcome or change in outcome. Glymour et al.
(29) presented challenges arising in this setting in a causal
context. Key differences between that setting and ours are
that we focused on repeated measures of exposures, covari-
ates, and outcomes, and we used adjustment for all relevant
past measures in order to estimate a total effect.

A total effect may be the most realistic effect of interest. It
could be particularly informative to estimate the total effect
of an exposure at a given time on outcomes at a series of
future times. We outlined a new test for existence of long-
term direct effects, which may be used as a simple alternative
to the direct effect g-null test. If the test provides no evidence
for existence of long-term direct effects, this informs the
investigator that joint exposure effects can be estimated with-
out the need for complex methods.

SCMMs estimate conditional effects, whereas MSMs are
typically used to estimate marginal effects. In linear models
without interactions, the conditional and unconditional ef-
fects coincide but are otherwise different. Conditional effects
may be more realistic for interpretation, in particular when
the exposed and unexposed have quite different covariate
histories.

Misspecification of SCMMs can lead to confounding bias.
Without strong prior information, we must assume many possi-
ble associations, including long-term direct effects, and include
adjustment for prior exposures, outcomes, and covariates. We
recommend adjustment for the outcome history and propensity
scores, and estimation using independence GEE. SCMMs ad-
justing for the propensity score are less vulnerable to misspecifi-
cation than MSMs because of their double-robustness property.
However, unlike MSMs, SCMMs require correct modeling of
interactions of the exposure with the covariate history. SCMMs
give better precision even than stabilizedweights in realistic sce-
narios. In addition to their simplicity and familiarity, SCMMs
extend more easily to accommodate continuous exposures,
drop-out, and missing data (see Web Appendix 5).
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