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Abstract

Robins’ generalized methods (g methods) provide consistent estimates of contrasts (e.g.

differences, ratios) of potential outcomes under a less restrictive set of identification con-

ditions than do standard regression methods (e.g. linear, logistic, Cox regression).

Uptake of g methods by epidemiologists has been hampered by limitations in under-

standing both conceptual and technical details. We present a simple worked example

that illustrates basic concepts, while minimizing technical complications.
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Robins’ g methods enable the identification and estimation

of the effects of generalized treatment, exposure, or inter-

vention plans. G methods are a family of methods that

include the g formula, marginal structural models, and

structural nested models. They provide consistent estimates

of contrasts (e.g. differences, ratios) of average potential

outcomes under a less restrictive set of identification condi-

tions than standard regression methods (e.g. linear, logis-

tic, Cox regression).1 Specifically, standard regression

requires no feedback between time-varying treatments and

time-varying confounders, while g methods do not. Robins

and Hern�an1 have provided a technically comprehensive

Key Messages

• G methods include inverse probability weighted marginal structural models, g estimation of a structural nested

model, and the g formula.

• G methods estimate contrasts of potential outcomes under a less restrictive set of assumptions than standard regres-

sion methods.

• Inverse probability weighting generates a pseudo-population in which exposures are independent of confounders,

enabling estimation of marginal structural model parameters.

• G estimation exploits the conditional independence between the exposure and potential outcomes to estimate struc-

tural nested model parameters.

• The g formula models the joint density of the observed data to generate potential outcomes under different exposure

scenarios.
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worked example of each of the three g methods. Here, we

present a corresponding worked example that illustrates

the need for and use of g methods, while minimizing tech-

nical details.

Example

Our research question concerns the effect of treatment for

HIV on CD4 count. Table 1 presents data from a hypothet-

ical observational cohort study (A¼ 1 for treated, A¼ 0

otherwise). Treatment is measured at baseline (A0) and

once during follow up (A1). The sole covariate is elevated

HIV viral load (Z¼ 1 for those with > 200 copies/ml,

Z¼ 0 otherwise), which is constant by design at baseline

(Z0 ¼ 1) and measured once during follow up just prior to

the second treatment (Z1). The outcome is CD4 count

measured at the end of follow up in units of cells/mm3. The

CD4 outcome in Table 1 is summarized (averaged) over

the participants at each level of the treatments and covari-

ate. The number of participants is provided in the right-

most column of Table 1. In this hypothetical study of one

million participants we ignore random error and focus on

identifying the parameters defining our causal effect of

interest, which we describe next.

Based on Figure 1, the average outcome in our simple

data generating structure may be composed of several

parts: the effects of A0, Z1, and A1; the two-way interac-

tions between A0 and Z1, A0 and A1, and A1 and Z1; and

the three-way interaction between A0, Z1, and A1. These

components (some whose magnitudes may be zero) can be

used to “build up” a contrast of substantive interest. Here,

we focus on the average causal effect of always taking

treatment (a0 ¼ 1; a1 ¼ 1) compared to never taking treat-

ment (a0 ¼ 0; a1 ¼ 0),

w ¼ EðYa0¼1;a1¼1Þ � EðYa0¼0;a1¼0Þ

¼ EðYa0¼1;a1¼1 � Ya0¼0;a1¼0Þ;

where expectations Eð�Þ are taken with respect to the target

population from which our sample is a random draw. This

average causal effect consists of the joint effect of A0 and

A1 on Y.2 Here, Ya0;a1 represents a potential outcome value

that would have been observed had the exposures been set

to specific levels a0 and a1. This potential outcome is dis-

tinct from the observed (or actual) outcome.

This average causal effect w ¼ EðYa0;a1 � Y0;0Þ is a mar-

ginal effect because it averages (or marginalizes) over all

individual-level effects in the population. We can write this

effect as EðYa0;a1 � Y0;0Þ ¼ w0a0 þ w1a1 þ w2a0a1, which

states that our average causal effect w may be composed of

two exposure main effects (e.g., w0 and w1) and their two-

way interaction (w2). This marginal effect w is indifferent

to whether the A1 component (w1 þ w2) is modified by Z1:

whether such effect modification is present or absent, the

marginal effect represents a meaningful answer to the ques-

tion: what is the effect of A0 and A1 in the entire

population?

Alternatively, we may wish to estimate this effect condi-

tional on certain values of another covariate. A conditional

effect would arise if, for example, one was specifically

interested in effect measure modification by Z1. When

properly modeled, this conditional effect represents a

meaningful answer to the question: what is the effect of A0

and A1 in those who receive Z1 ¼ 1 versus those who

receive Z1 ¼ 0? Modeling such effect measure modifica-

tion by time-varying covariates is the fundamental issue

that distinguishes marginal structural from structural

nested models. We thus return to this issue later. For sim-

plicity, we define our effect of interest as

w ¼ w0 þ w1 þ w2, and we explore a data example with no

effect modification by time-varying confounders.

Assumptions

Our average causal effect is defined as a function of two

averages that would be observed if everybody in the popu-

lation were exposed (or unexposed) at both time points.

Table 1. Prospective study data illustrating the number of

subjects (N) within each possible combination of treatment at

time 0 (A0), HIV viral load just prior to the second round of

treatment (Z1), and treatment status for the 2nd round of

treatment (A1). The outcome column (Y) corresponds to the

mean of Y within levels of A0, Z1, A1. Note that HIV viral load

at baseline is high (Z0 ¼ 1) for everyone by design

A0 Z1 A1 Y N

0 0 0 87.29 209,271

0 0 1 112.11 93,779

0 1 0 119.65 60,654

0 1 1 144.84 136,293

1 0 0 105.28 134,781

1 0 1 130.18 60,789

1 1 0 137.72 93,903

1 1 1 162.83 210,527

Figure 1. Causal diagram representing the relation between anti-retro-

viral treatment at time 0 (A0), HIV viral load just prior to the second

round of treatment (Z1), anti-retroviral treatment status at time 1 (A1),

the CD4 count measured at the end of follow-up (Y), and an unmeas-

ured common cause (U) of HIV viral load and CD4.
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Yet we cannot directly acquire information on these aver-

ages because in any given sample, some individuals will be

unexposed (or exposed). Part of our task therefore involves

justifying use of averages among subsets of the population

as what would be observed in the whole population. This

is accomplished by making three main assumptions.

Counterfactual consistency3 allows us to equate

observed outcomes among those who received a certain

exposure value to the potential outcomes that would be

observed under the same exposure value:

EðYjA0 ¼ a0;A1 ¼ a1Þ ¼ EðYa0;a1 jA0 ¼ a0;A1 ¼ a1Þ

The status of this assumption remains unaffected by the

choice of analytic method (e.g., standard regression versus

g methods). Rather, this assumption’s validity depends on

the nature of the exposure assignment mechanism.4 Under

counterfactual consistency, we partially identify our aver-

age causal effect.

Next, we assume exchangeability.5 Exchangeability

implies that the potential outcomes under exposures a0 and

a1 (denoted Ya0;a1 ) are independent of the actual (or

observed) exposures A0 and A1. We make this exchange-

ability assumption within levels of past covariate values

(conditional) and at each time point separately

(sequential):

EðYa0;a1 jA1;Z1;A0Þ ¼ EðYa0;a1 jZ1;A0Þ; and (1)

EðYa0;a1 jA0Þ ¼ EðYa0;a1Þ: (2)

This sequential conditional exchangeability assumption

would hold if there were no uncontrolled confounding and

no selection bias. Equation 1 says that, within levels of

prior viral load (Z1) and a given treatment level A0, Ya0;a1

does not depend on the assigned values of A1. Equation 2

says that Ya0;a1 does not depend on the assigned values of

A0. Note the correspondence between these two equations

and the causal diagram: because in Figure 1, Z1 is a com-

mon cause of A1 and Y, the assumption in equation 1 must

be made conditional on Z1. Failing to condition for Z1 will

result in uncontrolled confounding of the effect of A1, and

thus a dependence between the actual A1 value and the

potential outcome. However, adjusting for Z1 using stand-

ard methods (restriction, stratification, matching, or condi-

tioning in a linear regression model) would block part of

the effect from A0 through Z1, and potentially lead to a

collider bias of the effect of A0 through U.6 This is the cen-

tral challenge that g methods were developed to address.

The third assumption, known as positivity,7 requires 0 < P

ðA1 ¼ 1jZ1 ¼ z1;A0 ¼ a0Þ < 1 and 0 < PðA0 ¼ 1Þ < 1.

Furthermore, this assumption must hold for all values of a0

and z1 where PðA0 ¼ a0;Z1 ¼ z1Þ > 0. This latter condi-

tion is required so that effects are not defined in strata of a0

and z1 that do not exist. Positivity is met when there are

exposed and unexposed individuals within all confounder

and prior exposure levels, which can be evaluated

empirically.

Under these three assumptions, our hypothetical obser-

vational study can be likened to a sequentially randomized

trial in which the exposure was randomized at baseline,

and randomized again at time 1 with a probability that

depends on Z1. Under these assumptions, g methods can

be used to estimate counterfactual quantities with observa-

tional data. In the Supplementary Material, we provide

SAS code (SAS Institue, Cary, NC) in which standard

regression and all three g methods are fit to the hypotheti-

cal data in Table 1.

Results

Standard Methods

Table 2 presents results from fitting a number of standard

linear regression models to the data in Table 1. In the first

model, b̂ ¼ 60:9 cells/mm3 is the crude difference in mean

CD4 count for the always treated compared to the never

treated. In model two, b̂ ¼ 42:6 cells/mm3 is the Z1-

adjusted difference in mean CD4 count for the same con-

trast. Other model results are provided in Table 2, and

more could be entertained.

Table 3 presents the results from fitting all three g meth-

ods to the data in Table 1. The marginal structural model

resulted in ŵ ¼ 50:0 cells/mm3. The g formula resulted in

ŵ ¼ 50:0 cells/mm3. Finally, the structural nested model

resulted in ŵ ¼ 50:0 cells/mm3. Next we discuss how we

obtained these results.

G Methods

The g formula can be used to estimate the average CD4

level that would be observed in the population under a

given treatment plan. To implement the approach, we start

with a mathematical representation of the data generating

Table 2. A selection of regression models fit to the data in

Table 1, and parameter estimates for various exposure

contrasts

Model Parameters Estimate (b̂1)

b0 þ b1ðA0 þ A1Þ=2 60.9

b0 þ b1ðA0 þ A1Þ=2þ b2Z1 42.6

b0 þ b1A0 27.1

b0 þ b1A0 þ b2Z1 18.0

b0 þ b1A1 38.9

b0 þ b1A1 þ b2Z1 25.0
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mechanism for all variables in Table 1. We refer to this as

the joint density of the observed data. We factor the joint

density in a way that respects the temporal ordering of the

data by conditioning each variable on its history. For

example, if f ð�Þ represents the probability density function,

then by the definition of conditional probabilities8ðp36Þ we

can factor this joint density as

f ðy; a1; z1; a0Þ ¼ f ðyja1; z1; a0ÞPðA1 ¼ a1jZ1 ¼ z1;A0 ¼ a0Þ

PðZ1 ¼ z1jA0 ¼ a0ÞPðA0 ¼ a0Þ:

Our interest lies in the marginal mean of Y that would

be observed if A0 and A1 were set to some values a0 and a1,

respectively. To obtain this expectation, we perform two

mathematical operations on the factored joint density. The

first is the well-known expectation operator,8ðp47Þ which

allows us to write the conditional mean of Y in terms of its

conditional density. The second is the law of total proba-

bility,8ðp12Þ which allows us to marginalize over the distri-

bution of A1, Z1 and A0, yielding the marginal mean of Y:

EðYÞ ¼
X

a1;z1;a0

EðYjA1 ¼ a1; Z1 ¼ z1;A0 ¼ a0Þ

PðA1 ¼ a1jZ1 ¼ z1;A0 ¼ a0Þ
PðZ1 ¼ z1jA0 ¼ a0ÞPðA0 ¼ a0Þ:

We can now modify this equation to yield the average

of potential outcomes that would be observed after inter-

vening on the exposure [enabling us to drop out the terms

for PðA1 ¼ a1jZ1 ¼ z1;A0 ¼ a0Þ and PðA0 ¼ a0Þ], yielding

EðYa0;a1Þ ¼
X

z1

EðYjA1 ¼ a1;Z1 ¼ z1;A0 ¼ a0Þ

PðZ1 ¼ z1jA0 ¼ a0Þ:

This equation is the g formula; its proof, given in the

Supplementary Material, follows from the three identify-

ing assumptions. In our simple scenario, the expectation

EðY0;0Þ can be calculated by summing the mean CD4

count in the never treated with Z1 ¼ 1 (weighted by the

proportion of people with Z1 ¼ 1 in the A0 ¼ 0 stratum)

and the mean CD4 count in the never treated with Z1 ¼ 0

(weighted by the proportion of people with Z1 ¼ 0 in the

A0 ¼ 0 stratum). Weighting the observed outcome’s con-

ditional expectation by the conditional probability that

Z1¼ z1 enables us to account for the fact that Z1 is

affected by A0, but also confounds the effect of A1 on Y.

Computing this expectation’s value yields a result of

ÊðY0;0Þ ¼ 100:0, where we use Ê to denote a sample,

rather than a population average, and with the under-

standing that ÊðY0;0Þ is equal to the g formula with A0

¼ A1 ¼ 0 (since the potential outcomes Y0;0 are not

directly observed). We repeat the process to obtain the

corresponding value for treated at time 0 only:

ÊðY1;0Þ ¼ 125:0; treated at time 1 only: ÊðY0;1Þ ¼ 125:0;

and always treated: ÊðY1;1Þ ¼ 150:0. Thus, ŵGF ¼ 150:0

�100:0 ¼ 50:0, which is the average causal effect of treat-

ment on CD4 cell count.

This approach to computing the value of the g formula

is referred to as nonparametric maximum likelihood esti-

mation. Several authors9–13 demonstrate how simulation

from parametric regression models can yield a g formula

estimator, which is often required in typical population-

health studies with many covariates.

Modeling each component of the joint density of the

observed data (including the probability that Z1¼ z1) can

lead to bias if any of these models are mis-specified. To

compute the expectations of interest, we can instead spec-

ify a single model that targets our average causal effect,

and avoid unnecessary modeling. Marginal structural mod-

els map a marginal summary (e.g., average) of potential

outcomes to the treatment and parameter of interest w.

Unlike the g formula, they do not require a model for

PðZ1 ¼ z1jA0 ¼ a0Þ. Additionally, as we show in the

Supplementary Material, while they cannot model it

directly, they are indifferent to whether time-varying effect

modification is present or absent. Because our interest lies

in the marginal contrast of outcomes under always versus

never treated conditions, our marginal structural model for

the effect of A can be written as EðYa0;a1Þ ¼ b0 þ w0a0

þw1a1 þ w2a0a1, where b0 ¼ EðY0;0Þ is a (nuisance) inter-

cept parameter, and w ¼ EðY1;1 � Y0;0Þ ¼ ðw0 þ w1 þ w2Þ
is the effect of interest.

Inverse probability weighting can be used estimate mar-

ginal structural model parameters (proofs are provided in

the Supplementary Material). To estimate w using inverse

probability weighted regression, we first obtain the pre-

dicted probabilities of the observed treatments. In our

example data, there are two possible A1 values (exposed,

unexposed) for each of the four levels in Z1 and A0.

Additionally, there are two possible A0 values (exposed,

unexposed) overall. This leads to four possible exposure

regimes: never treat, treat early only, treat late only, and

Table 3. G methods and corresponding estimates comparing

contrasts quantifying always exposed versus never exposed

scenarios fit to data in Table 1

G Method ŵ
a

G Formula 50.0

IP-weighted marginal structural model 50.0

G Estimated Structural Nested Model 50.0

a w ¼ EðY1;1 � Y0;0Þ
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always treat. For each Z1 value, we require the predicted

probability of the exposure that was actually received.

These probabilities are computed by calculating the appro-

priate proportions of subjects in Table 1. Because there are

no variables that affect A0, this probability is 0.5 for all

individuals in the sample. Furthermore, in our example A1

is not affected by A0 (Figure 1). Thus, the Z1 specific prob-

abilities of A1 are constant across levels of A0. In settings

where A0 affects A1, the Z1 specific probabilities of A1

would vary across levels of A0.

In the stratum defined by Z1 ¼ 1, the predicted proba-

bilities of A1 ¼ 0 and A1 ¼ 1 are 0.308 and 0.692, respec-

tively. For example, ð210; 527þ 136;293Þ=ð210;527

þ 136; 293þ 93; 903 þ 60;654Þ ¼ 0:692. Thus, the prob-

abilities for each treatment combination are: 0:5� 0:308

¼ 0:155 (never treated), 0:5� 0:308 ¼ 0:155 (treated

early only), 0:5� 0:692 ¼ 0:346 (treated late only), and

0:5� 0:692 ¼ 0:346 (always treated). Dividing the mar-

ginal probability of each exposure category (not stratified

by Z1) by these stratum specific probabilities gives stabi-

lized weights of 1.617, 1.617, 0.725, and 0.725, respec-

tively. For example, the never treated weight is

ð0:5� 0:501Þ=ð0:5� 0:308Þ ¼ 1:617. The same approach

is taken to obtain predicted probabilities and stabilized

weights in the stratum defined by Z1 ¼ 0. The weights and

weighted data are provided in Table 4.

Fitting this model in the weighted data given in Table 4

provides the inverse-probability weighted estimates

½ŵ0IP
¼ 25:0; ŵ1IP

¼ 25:0; ŵ2IP
¼ 0:0�, thus yielding

ŵIP ¼ 50:0.

Weighting the observed data by the inverse of the prob-

ability of the observed exposure yields a “pseudo-pop-

ulation” (Table 4) in which treatment at the second time

point (A1) is no longer related to (and is thus no longer

confounded by) viral load just prior to the second time

point (Z1). Thus, weighting a conditional regression model

for the outcome by the inverse probability of treatment

enables us to account for the fact that Z1 both confounds

A1 and is affected by A0.

Structural nested models map a conditional contrast of

potential outcomes to the treatment, within nested sub-groups

of individuals defined by levels of A1, Z1, and A0. Our struc-

tural nested model can be written with two equations as

EðYa0;a1 � Ya0;0jA0 ¼ a0;Z1 ¼ z1;A1 ¼ a1Þ

¼ a1ðw1 þ w2a0 þ w3z1 þ w4a0z1Þ

EðYa0;0 � Y0;0jA0 ¼ a0Þ ¼ w0a0

Note this model introduces two additional parameters: w3

for the two-way interaction between a1 and z1, and w4 for

the three-way interaction between a1, z1, and a0. Indeed,

the ability to explicitly quantify interactions between time-

varying exposures and time-varying covariates (which can-

not be modeled via standard marginal structural models) is

a major strength of structural nested models when effect

modification is of interest.1 To simplify our exposition, we

set ðw3;w4Þ ¼ ð0;0Þ in our data example, allowing us to

drop the w3z1 and w4a0z1 terms from the model. In effect,

this renders our structural nested mean model equivalent to

a semi-parametric marginal structural model. In the

Supplementary Material, we explain how marginal struc-

tural and structural nested models each relate to time-

varying interactions in more detail.

We can now use gestimation to estimate ðw0;w1;w2Þ in

the above structural nested model. Gestimation is based on

solving equations that directly result from the sequential

conditional exchangeability assumptions in (1) and (2),

combined with assumptions implied by the structural

nested model. If, at each time point, the exposure is condi-

tionally independent of the potential outcomes (sequential

exchangeability) then the conditional covariance between

the exposure and potential outcomes is zero.14 Formally,

these conditional independence relations can be written as:

0 ¼ CovðYa0;0;A1jZ1;A0Þ

¼ CovðY0;0;A0Þ

where Covð�Þ is the well-known covariance formula.8ðp52Þ

These equalities are of little direct use for estimation,

though, as they contain unobserved potential outcomes

and are not yet functions of the parameters of interest.

However, by counterfactual consistency and the structural

nested model, we can replace these unknowns with quanti-

ties estimable from the data.

Specifically, as we prove in the Supplementary

Material, the structural nested model, together with

exchangeability and counterfactual consistency imply that

we can replace the potential outcomes Ya0;0 and Y0;0 in the

above covariance formulas with their values derived from

the structural nested model, yielding:

Table 4. Stabilized inverse probability weights and Pseudo-

population obtained by using inverse probability weights

A0 Z1 A1 Y sw Pseudo N

0 0 0 87.23 0.72 151222.84

0 0 1 112.23 1.62 151680.46

0 1 0 119.79 1.62 98110.06

0 1 1 144.78 0.72 98789.40

1 0 0 105.25 0.72 97395.08

1 0 1 130.25 1.62 98321.62

1 1 0 137.80 1.62 151884.02

1 1 1 162.80 0.72 152596.51
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0 ¼ CovfY � A1ðw1 þ w2A0Þ;A1jZ1;A0g

¼ CovfY � A1ðw1 þ w2A0Þ � w0A0;A0g:

We provide an intuitive explanation for this substitu-

tion in the Supplementary Material. We also show how

these covariance relations yield three equations that can be

used to solve each of the unknowns in the above structural

nested model (w0;w1;w2). Two of the three equations yield

the following g estimators:

ŵ1GE
¼ Ê½ð1� A0ÞYfA1 � ÊðA1jZ1;A0Þg�

Ê½ð1� A0ÞA1fA1 � ÊðA1jZ1;A0Þg�

ŵ1GE
þ ŵ2GE

¼ Ê½A0YfA1 � ÊðA1jZ1;A0Þg�
Ê½A0A1fA1 � ÊðA1jZ1;A0Þg�

Note that to solve these equations we need to model

EðA1jZ1;A0Þ, which in practice we might assume can be

correctly specified as the predicted values from a logistic

model for A1. In our simple setting, the correctness of this

model is guaranteed by saturating it (i.e., conditioning the

model on Z1, A0 and their interaction).

As we show in the Supplementary Material, implement-

ing these equations in software can be easily done using

either an instrumental variables (i.e., two-stage least

squares) estimator, or ordinary least squares.

Once the above parameters are estimated, the next step

is to subtract the effect of A1 and A1A0 from Y to obtain
~Y ¼ Y � ŵ1GE

A1 � ŵ2GE
A1A0. We can then solve for the

last parameter using a sample version of the third g estima-

tion equality, yielding our final estimator and completing

the procedure:

ŵ0GE
¼ Ê½ ~Y fA0 � ÊðA0Þg�

Ê½A0fA0 � ÊðA0Þg�
:

Again the above estimator can be implemented using an

instrumental variable or ordinary least squares estimator.

Implementing this procedure in our example data, we

obtain ½w0GE
¼ 25:0;w1GE

¼ 25:0;w2GE
¼ 0:0�, thus yield-

ing wGE ¼ 50:0.

The potential outcome under no treatment can be

thought of as a given subject’s baseline prognosis: in our

setting, individuals with poor baseline prognosis will have

low CD4 levels, no matter what their treatment status

may be. In the absence of confounding or selection bias,

one expects this baseline prognosis to be independent of

treatment status. G estimation exploits this independence

by assuming no uncontrolled confounding (conditional

on measured confounders), and assigning values to ŵGE

that render the potential outcomes independent of the

exposure. However, assigning the correct values to ŵGE

depends on there being no confounding or selection bias.

Discussion

Having constructed these data using the causal diagram

shown in Figure 1, we know the true effect of combined

treatment is indeed 50 cells/mm3 (25 cells/mm3 for each

exposure main effect) as well approximated by all three g

methods, but not by any of the standard regression models

we fit, with one exception. The final standard result pre-

sented in Table 2 correctly estimates the effect of the sec-

ond treatment (an effect of 25 cells/mm3), as would be

expected from the causal diagram.

For the past several years, we have used the foregoing

simple example to initiate epidemiologists to g methods

with some success. Once having studied this simple exam-

ple in detail, we recommend working through more com-

prehensive examples by Robins and Hern�an1 and Hern�an

and Robins.16 A recent tutorial2 may then be of further

use. G methods are becoming more common in epidemio-

logic research.17 We hope this commentary facilitates the

process of better understanding these useful methods.
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